Refine search
Results 1-10 of 12
Exposure to acrylamide induces cardiac developmental toxicity in zebrafish during cardiogenesis
2018
Huang, Mengmeng | Jiao, Jingjing | Wang, Jun | Xia, Zhidan | Zhang, Yu
Acrylamide (AA), an environmental pollutant, has been linked to neurotoxicity, genotoxicity and carcinogenicity. AA is widely used to synthesize polymers for industrial applications, is widely found in Western-style carbohydrate-rich foods and cigarette smoke, and can also be detected in human umbilical cord blood and breast milk. This is the first study that demonstrated the cardiac developmental toxicity of AA in zebrafish embryos. Post-fertilization exposure to AA caused a clearly deficient cardiovascular system with a shrunken heart and abortive morphogenesis and function. Disordered expression of the cardiac genes, myl7, vmhc, myh6, bmp4, tbx2b and notch1b, as well as reduced number of myocardial cells and endocardial cells, indicated the collapsed development of ventricle and atrium and failed differentiation of atrioventricular canal (AVC). Although cell apoptosis was not affected, the capacity of cardiomyocyte proliferation was significantly reduced by AA exposure after fertilization. Further investigation showed that treatment with AA specifically reduced the expressions of nkx2.5, myl7 and vmhc in the anterior lateral plate mesoderm (ALPM) during the early cardiogenesis. In addition, AA exposure disturbed the restricted expressions of bmp4, tbx2b and notch1b during atrioventricular (AV) valve development and cardiac chambers maturation. Our results showed that AA-induced cardiotoxicity was related to decreased cardiac progenitor genes expression, reduced myocardium growth, abnormal cardiac chambers morphogenesis and disordered AVC differentiation. Our study demonstrates that AA exposure during a time point analogous to the first trimester in humans has a detrimental effect on early heart development in zebrafish. A high ingestion rate of AA-containing products may be an underlying risk factor for cardiogenesis in fetuses.
Show more [+] Less [-]Comparative proteomic analysis reveals heart toxicity induced by chronic arsenic exposure in rats
2017
Huang, Qingyu | Xi, Guochen | Alamdar, Ambreen | Zhang, Jie | Shen, Heqing
Arsenic is a widespread metalloid in the environment, which poses a broad spectrum of adverse effects on human health. However, a global view of arsenic-induced heart toxicity is still lacking, and the underlying molecular mechanisms remain unclear. By performing a comparative quantitative proteomic analysis, the present study aims to investigate the alterations of proteome profile in rat heart after long-term exposure to arsenic. As a result, we found that the abundance of 81 proteins were significantly altered by arsenic treatment (35 up-regulated and 46 down-regulated). Among these, 33 proteins were specifically associated with cardiovascular system development and function, including heart development, heart morphology, cardiac contraction and dilation, and other cardiovascular functions. It is further proposed that the aberrant regulation of 14 proteins induced by arsenic would disturb cardiac contraction and relaxation, impair heart morphogenesis and development, and induce thrombosis in rats, which is mediated by the Akt/p38 MAPK signaling pathway. Overall, these findings will augment our knowledge of the involved mechanisms and develop useful biomarkers for cardiotoxicity induced by environmental arsenic exposure.
Show more [+] Less [-]Artifact weathering, anthropogenic microparticles and lead contamination in urban soils at former demolition sites, Detroit, Michigan
2013
Howard, Jeffrey L. | Dubay, Brian R. | Daniels, W Lee
A chronological sequence of urban soils 3–92 years old was studied to determine the effects of time on morphogenesis, artifact weathering, and the geochemical partitioning of Pb. Key chronofunctions determined are an increase in ˆA horizon Development Index (defined herein based on soil color) and water-soluble Pb, and a decrease in pH and C/N, with increasing soil age. Key artifact weathering reactions are: 1) portlandite in mortar altered to calcite, 2) ferrite in wrought-iron altered to ferrihydrite and goethite, and 3) carbonaceous materials altered to water-soluble organic substances. Mortar and wrought-iron were found to be Pb-bearing, but weather to produce immobilizing agents. Hence, they are both a source and a sink for Pb. The origin and mobilization of water-soluble Pb is complex and probably includes microbial extracellular polymeric substances, biodegraded soil organic matter, and solubilized organic substances derived from carbonaceous anthropogenic microparticles (soot, char and coal-related wastes).
Show more [+] Less [-]Early-life exposure to tobacco smoke alters airway signaling pathways and later mortality in D. melanogaster
2022
Sirocko, Karolina-Theresa | Angstmann, Hanna | Papenmeier, Stephanie | Wagner, Christina | Spohn, Michael | Indenbirken, Daniela | Ehrhardt, Birte | Kovacevic, Draginja | Hammer, Barbara | Svanes, Cecilie | Rabe, Klaus F. | Röder, Thomas | Uliczka, Karin | Krauss-Etschmann, Susanne
Early life environmental influences such as exposure to cigarette smoke (CS) can disturb molecular processes of lung development and thereby increase the risk for later development of chronic respiratory diseases. Among the latter, asthma and chronic obstructive pulmonary disease (COPD) are the most common. The airway epithelium plays a key role in their disease pathophysiology but how CS exposure in early life influences airway developmental pathways and epithelial stress responses or survival is poorly understood. Using Drosophila melanogaster larvae as a model for early life, we demonstrate that CS enters the entire larval airway system, where it activates cyp18a1 which is homologues to human CYP1A1 to metabolize CS-derived polycyclic aromatic hydrocarbons and further induces heat shock protein 70. RNASeq studies of isolated airways showed that CS dysregulates pathways involved in oxidative stress response, innate immune response, xenobiotic and glutathione metabolic processes as well as developmental processes (BMP, FGF signaling) in both sexes, while other pathways were exclusive to females or males. Glutathione S-transferase genes were further validated by qPCR showing upregulation of gstD4, gstD5 and gstD8 in respiratory tracts of females, while gstD8 was downregulated and gstD5 unchanged in males. ROS levels were increased in airways after CS. Exposure to CS further resulted in higher larval mortality, lower larval-pupal transition, and hatching rates in males only as compared to air-exposed controls. Taken together, early life CS induces airway epithelial stress responses and dysregulates pathways involved in the fly's branching morphogenesis as well as in mammalian lung development. CS further affected fitness and development in a highly sex-specific manner.
Show more [+] Less [-]Effect of heavy oil on the development of the nervous system of floating and sinking teleost eggs
2011
Irie, Kouta | Kawaguchi, Masahumi | Mizuno, Kaori | Song, Jun-Young | Nakayama, Kei | Kitamura, Shin-Ichi | Murakami, Yasunori
Heavy oil (HO) on the sea surface penetrates into fish eggs and prevents the normal morphogenesis. To identify the toxicological effects of HO in the context of the egg types, we performed exposure experiments using floating eggs and sinking eggs. In the course of development, HO-exposed embryos of floating eggs showed abnormal morphology, whereas early larva of the sinking eggs had almost normal morphology. However, the developing peripheral nervous system of sinking eggs showed abnormal projections. These findings suggest that HO exposed fishes have problems in the developing neurons, although they have no morphological malformations. Through these observations, we conclude that HO is strongly toxic to floating eggs in the morphogenesis, and also affect the neuron development in both floating and sinking eggs.
Show more [+] Less [-]Reviewing biomimicry design case studies as a solution to sustainable design
2022
Othmani, Nurul Izzati | Mohamed, Syahidah Amni | Abdul Hamid, Nor Hamizah | Ramlee, Noorliyana | Yeo, Lee Bak | Mohd Yunos, Mohd Yazid
There have been many studies on bio-inspired research, where biomimicry capabilities facilitating sustainable designs are in dearth. For a sustainable design, it is necessary to consider water efficiency, zero waste, thermal environment, and energy supply. This paper investigates how biomimicry is adopted in the sustainable design of buildings. A thorough content analysis of eight case studies focused on the built environment and how biomimicry integrated with the design of a building was executed. The selection of cases study was based on the concept of biomimicry by taking inspiration from nature and applying them in the everyday built environment. Thus, the building designs are more ecologically sustainable than conventional ones, where biomimicry approaches and principles are adopted. The findings suggest that the design of a building can inspire society with new ecological morals, where understanding of biological morphogenesis can inspire design to resolve challenges and essentially help create a healthy environment. Biomimicry harnesses and replicates the principles found in nature to create a built environment that benefits people and other living creatures and safeguards biodiversity. Thus, adopting biomimicry in designing a building will help to develop a culture of active environmental design.
Show more [+] Less [-]Genome-wide transcriptional analysis of cardiovascular-related genes and pathways induced by PM2.5 in human myocardial cells
2017
Feng, Lin | Yang, Xiaozhe | Asweto, Collins Otieno | Wu, Jing | Zhang, Yannan | Hu, Hejing | Shi, Yanfeng | Duan, Junchao | Sun, Zhiwei
Air pollution has been a major environment-related health threat. Most of the studies on PM₂.₅ toxicity have verified on the cardiovascular system and endothelial cells. However, researches on PM₂.₅-induced myocardial-related toxicity are limited. This study aims to fully understand the toxic effects of PM₂.₅ on human myocardial cell (AC16) and explore its molecular mechanism based on microarray analysis and bioinformatics analysis. Microarray data analysis manifested that PM₂.₅-induced toxicity affected expression of 472 genes compared with the control group, including 166 upregulated genes and 306 downregulated genes in human myocardial (AC16) cells. GO analysis showed that cellular processes such as immune response, cell maturation, embryonic heart tube morphogenesis, cellular response to electrical stimulus, skeletal muscle tissue regeneration, and negative regulation of signal transduction were upregulated, while regulation of transcription (DNA-dependent), rhythmic process, protein destabilization apoptotic process, and innate immune response were downregulated. The pathway analysis indicates that cell signaling pathways such as cytokine-cytokine receptor interaction, NF-κB signaling pathway, chemokine signaling pathway, endocrine and other factor-regulated calcium reabsorption, HTLV-I infection, and cell adhesion molecules (CAMs) were upregulated, while the TGF-β signaling pathway was downregulated. In addition, Signal-net showed that the TUBA4A, ADRBK2, BRIX1, SMC4, EIF5B, PRMT1, ATG4B, and NDC80 genes were significantly decreased, while the expression of the KRT6B gene was markedly increased compared with the control group. All the genes were verified by qRT-PCR. This study had provided new bioinformatics evidences in PM₂.₅-induced myocardial tissue toxicity which is necessary for further cardiovascular system toxicity studies.
Show more [+] Less [-]The developmental neurotoxicity of legacy vs. contemporary polychlorinated biphenyls (PCBs): similarities and differences
2020
Klocke, Carolyn | Sethi, Sunjay | Lein, Pamela J.
Although banned from production for decades, PCBs remain a significant risk to human health. A primary target of concern is the developing brain. Epidemiological studies link PCB exposures in utero or during infancy to increased risk of neuropsychiatric deficits in children. Nonclinical studies of legacy congeners found in PCB mixtures synthesized prior to the ban on PCB production suggest that non-dioxin-like (NDL) congeners are predominantly responsible for the developmental neurotoxicity associated with PCB exposures. Mechanistic studies suggest that NDL PCBs alter neurodevelopment via ryanodine receptor-dependent effects on dendritic arborization. Lightly chlorinated congeners, which were not present in the industrial mixtures synthesized prior to the ban on PCB production, have emerged as contemporary environmental contaminants, but there is a paucity of data regarding their potential developmental neurotoxicity. PCB 11, a prevalent contemporary congener, is found in the serum of children and their mothers, as well as in the serum of pregnant women at increased risk for having a child diagnosed with a neurodevelopmental disorder (NDD). Recent data demonstrates that PCB 11 modulates neuronal morphogenesis via mechanisms that are convergent with and divergent from those implicated in the developmental neurotoxicity of legacy NDL PCBs. This review summarizes these data and discusses their relevance to adverse neurodevelopmental outcomes in humans.
Show more [+] Less [-]Light-emitting diodes: whether an efficient source of light for indoor plants?
2017
Rehman, Muzammal | Ullah, Sana | Bao, Yaning | Wang, Bo | Peng, Dingxiang | Liu, Lijun
Availability of sufficient light for growth optimization of plants in greenhouse environment during winter is a major challenge, as light during winter is significantly lower than that in the summer. The most commonly used artificial light sources (e.g., metal halide lamps, high pressure sodium lamps, and high fluorescent lamps) are of low quality and inefficient. Therefore, better options should be developed for sustaining agricultural food production during low levels of solar radiation. In recent advances, light-emitting diodes (LEDs) have remarkable potential as supplemental source of light for promoting plant growth. LEDs are novel and versatile source of light with cool emitting surface, wavelength specificity, and low electric power requirement. In the present study, we provided a contemporary synthesis of existing evidence along with our hypothetical concepts to clarify how LED approach could be an efficient and cost-effective source of light for plant growth and development especially in closed production system. In comparative analysis of common artificial vs. LED lighting, we revealed that spectral quality of LEDs can have vivid effects on plant morphogenesis and anatomy. We also discussed the influence of different colors of LEDs on growth performance of plants and provided the cost benefit analysis of using LEDs compared with other traditional sources. Overall, we hope that this article will be of great worth in future due to its practical implications as well as research directions.
Show more [+] Less [-]Effects of modified nanoscale carbon black on plant growth, root cellular morphogenesis, and microbial community in cadmium-contaminated soil
2020
Cheng, Jiemin | Sun, Zihan | Li, Xinrui | Yu, Yaqin
Previous researches have confirmed that modified nanoscale carbon black (MCB) can decrease the bioavailability of heavy metals in soil and accumulation in plant tissues, resulting in the increase of biomass of plant. However, as a nanoparticle, the effects of MCB on plant cell morphology and microbial communities in Cd-contaminated soil are poorly understood. This study, through greenhouse experiments, investigated the effects of MCB as an amendment for 5 mg·kg⁻¹ Cd-contaminated soil on plant growth, plant cellular morphogenesis, and microbial communities. Two types of plants, metal-tolerant plant ryegrass (Lolium multiflorum), and hyperaccumulator plant chard (Beta vulgaris L. var. cicla) were selected. The results indicated that adding MCB to Cd-contaminated soil, the dry biomass of shoot ryegrass and chard increased by 1.07 and 1.05 times, respectively, comparing with control group (the treatment without MCB). Meanwhile, the physiological characteristics of plant root denoted that adding MCB reduced the damage caused by Cd to plants. The acid phosphatase activity of soils treated with MBC was higher and the dehydrogenase activity was lower than control group during whole 50 days of incubation, while the urease and catalase activity of soils treated with MBC were higher than control group after 25 days of incubation. When compared with the treatment without MCB, the abundances of nitrogen-functional bacteria (Rhodospirillum and Nitrospira) and phosphorus-functional bacteria (Bradyrhizobium and Flavobacterium) increased but that of nitrogen-functional bacteria, Nitrososphaera, declined. The presence of MCB resulted in increased microbial community abundance by reducing the bioavailability of heavy metals in soil, while increasing the abundance of plants by increasing the amount of available nitrogen in soil. The result of this study suggests that MCB could be applied to the in-situ immobilization of heavy metal in contaminated soils because of its beneficial effects on plants growth, root cellular morphogenesis, and microbial community.
Show more [+] Less [-]