Refine search
Results 1-10 of 600
Enzymatic probe sonication for quick extraction of total bisphenols from animal-derived foods: Applicability to occurrence and exposure assessment
2022
Xiao, Zhiming | Wang, Shi | Suo, Decheng | Wang, Ruiguo | Huang, Yuan | Su, Xiaoou
A high demand exists in bisphenols (BPs) screening studies for quick, reliable and straightforward analytical methods that generate data faster and simultaneously. Herein, we describe a combination of enzymatic probe sonication (EPS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for quick extraction and simultaneous quantification of eight important BPs in animal-derived foods. Results obtained demonstrated that the ultrasonic probe power could not only enhance the enzymatic hydrolysis efficiency, but also accelerate the liquid-liquid extraction procedure. Under optimized EPS parameters, one sample could be exhaustively extracted within 120 s, as compared with 12 h needed for the conventional enzymatic extraction which is more suitable for high-throughput analysis. The method was successfully applied to analyze residual BPs in animal-derived foods collected from Beijing, China. Widespread occurrence of BPA, BPS, BPF, BPAF, BPP, and BPB were found, with detection frequencies of 65.2%, 42.4%, 33.7%, 29.4%, 28.3%, and 27.2%, respectively. The highest total concentration levels of BPs (sum of the eight BPs analyzed, ΣBPs) were found in chicken liver (mean 12.2 μg/kg), followed by swine liver (6.37 μg/kg), bovine muscle (3.24 μg/kg), egg (2.03 μg/kg), sheep muscle (2.03 μg/kg), chicken muscle (1.45 μg/kg), swine muscle (1.42 μg/kg), and milk (1.17 μg/kg). The estimated daily intake (EDI) of BPs, based on the mean and 95th percentile concentrations and daily food consumptions, was estimated to be 5.687 ng/kg bw/d and 22.71 ng/kg bw/d, respectively. The human health risk assessment in this work suggests that currently BPs do not pose significant risks to the consumers because the hazard index (HI) was <1.
Show more [+] Less [-]Bioaccumulation of per- and polyfluoroalkyl substance in fish from an urban river: Occurrence, patterns and investigation of potential ecological drivers
2022
Macorps, Nicolas | Le Menach, Karyn | Pardon, Patrick | Guérin-Rechdaoui, Sabrina | Rocher, Vincent | Budzinski, Hélène | Labadie, Pierre
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in aquatic environments and a recent shift toward emerging PFAS is calling for new data on their occurrence and fate. In particular, understanding the determinants of their bioaccumulation is fundamental for risk assessment purposes. However, very few studies have addressed the combined influence of potential ecological drivers of PFAS bioaccumulation in fish such as age, sex or trophic ecology. Thus, this work aimed to fill these knowledge gaps by performing a field study in the Seine River basin (France). Composite sediment and fish (European chub, Squalius Cephalus) samples were collected from four sites along a longitudinal transect to investigate the occurrence of 36 PFAS. Sediment molecular patterns were dominated by fluorotelomer sulfonamidoalkyl betaines (i.e. 6:2 and 8:2 FTAB, 46% of ∑PFAS on average), highlighting the non-negligible contribution of PFAS of emerging concern. C₉–C₁₄ perfluoroalkyl carboxylic acids, perfluorooctane sulfonic acid (PFOS), perfluorooctane sulfonamide (FOSA) and 10:2 fluorotelomer sulfonate (10:2 FTSA) were detected in all fish samples. Conversely, 8:2 FTAB was detected in a few fish from the furthest downstream station only, suggesting the low bioaccessibility or the biotransformation of FTABs. ∑PFAS in fish was in the range 0.22–3.8 ng g⁻¹ wet weight (ww) and 11–140 ng g⁻¹ ww for muscle and liver, respectively. Fish collected upstream of Paris were significantly less contaminated than those collected downstream, pointing to urban and industrial inputs. The influence of trophic ecology and biometry on the interindividual variability of PFAS burden in fish was examined through analyses of covariance (ANCOVAs), with sampling site considered as a categorical variable. While the latter was highly significant, diet was also influential; carbon sources and trophic level (i.e. estimated using C and N stable isotope ratios, respectively) equally explained the variability of PFAS levels in fish.
Show more [+] Less [-]The use of image analysis techniques for the study of muscle melanisation in sand flathead (Platycephalus bassensis)
2022
Ooi, Chun Kit | Lewis, Trevor | Nowak, Barbara | Lyle, Jeremy | Haddy, James
Muscle melanisation in sand flathead is visible as black spots in the normally white flesh of fish. It is widespread in Tasmania, including at the Tamar Estuary, with increasing frequency of reporting by recreational fishers. The phenomenon is more prevalent in areas impacted by heavy metal pollution and has been linked to heavy metal accumulation. In this study, image processing software ImageJ was employed to study the phenomenon and to establish an objective rating system. A longitudinal profile plot was used to study the greying of the fillet. The degree of melanisation was rated based on the percentage surface area melanised on the surface and in transverse sections of fillets. A muscle melanisation scoring system for sand flathead was established based on visual interpretation using the macroscopic melanisation scoring criteria: melanisation scores 0 = <0.5%, 1 = 0.5–5%, 2 = 5–20%, and 3 = >20% (% = melanised surface area in proportion to the whole fillet). A refined image analysis technique was developed to quantify the percentage of melanised muscle surface area and the muscle melanisation scoring system was statistically validated. Sand flathead fillet with higher melanisation score was shown to be linked to increased intensity of greyness and greater numbers and size of black spots on the surface of fillets and within the flesh. The greying and black spots were primarily concentrated at the anterior region of fillet and around the dorsal vertebrae zone on transverse section of fillets. Overall, findings from this study established the use of image analysis techniques to validate visual inspection and to give a standardised and objective method to determine the degree of melanisation in sand flathead. As muscle melanisation appears to be linked to heavy metal pollution, the standardised scoring system would facilitate future research for environmental pollution and monitoring purposes.
Show more [+] Less [-]Bioaccumulation, genotoxicity, and risks to native fish species from inorganic contaminants in the Pantanal Sul-Mato-Grossense, Brazil
2022
Viana, Lucilene Finoto | Crispim, Bruno do Amaral | Kummrow, Fábio | Nascimento, Valter Aragão do | Melo, Elaine Silva de Pádua | de Lima, Nathalya Alice | Barufatti, Alexeia
The Aquidauana River is one of the most important rivers in the Pantanal region, Brazil. However, its waters have been contaminated by nearby anthropogenic activities, threatening native fish species. In this study, our objectives were: 1) to determine the concentrations of Al, As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn in water and sediment samples from the Aquidauana River and to assess the risks posed to aquatic biota; 2) to quantify the concentration of these elements in muscle and liver tissue samples from four native fish species; 3) to evaluate the potential bioaccumulation of inorganic elements in the muscles and liver; and 4) to investigate genotoxicity biomarkers and their association with the inorganic element concentrations present in the muscle tissue. Water and fish samples were collected in November 2020. The concentrations of Al, As, Cd, Cu, Fe, and Pb in the water samples were in disagreement with the Brazilian legislation and presented risks to the aquatic biota. In terms of mixtures of inorganic elements, there was a great increase in the risk to biota. The As concentration did not meet the Brazilian standard for sediments in the sample collected at sampling site 6. The concentrations of Cd and Pb in the muscle tissue of Hypostomus regani, Prochilodus lineatus, Brycon hilarii, and Mylossoma duriventre exceeded the Brazilian standards for human consumption. H. regani showed greater genotoxic damage, and the higher the Al and Fe concentrations in the muscle tissue, the higher the frequencies of lobulated nuclei and nuclear invaginations. Together, our results demonstrate the negative impacts on native fish species from the Aquidauana River contamination and indicate risks to Pantanal biodiversity.
Show more [+] Less [-]Bioaccumulation and trophic transfer of perfluorinated alkyl substances (PFAS) in marine biota from the Belgian North Sea: Distribution and human health risk implications
2022
Cara, Byns | Lies, Teunen | Thimo, Groffen | Robin, Lasters | Lieven, Bervoets
Per- and polyfluorinated alkyl substances (PFAS) are highly persistent chemicals, which pose a potential risk for aquatic wildlife due to their bioaccumulative behaviour and toxicological effects. Although the distribution of PFAS in marine environments has been studied worldwide, little is known on the contamination of PFAS in the southern North Sea. In the present study, the bioaccumulation and trophic transfer of Perfluoroalkyl acids (PFAAs) was studied in liver and muscle tissue of seven fish species and in whole-body tissue of two crustacean species, collected at 10 sites in the Belgian North Sea. Furthermore, the human and ecological health risks were examined. Overall, perfluorooctane sulfonate (PFOS) was predominant in all matrices and other long-chain PFAS were frequently detected. Mean PFOS concentrations ranged from <LOQ to 107 ng/g (ww) in fish liver, from <LOQ to 24 ng/g ww in fish muscle and from 0.29 to 5.6 ng/g ww in crustaceans. Elevated perfluorotridecanoic acid (PFTrDA) concentrations were detected in fish liver from the estuarine and coastal region (<LOQ-116 ng/g ww), indicating a specific point source of this compound. Based on stable isotope analysis, no distinctive trophic transfer patterns of PFAS could be identified which implies that the bioconcentration of PFAS from the surrounding abiotic environment is most likely dominating over the biomagnification in the studied biota. The consumption of commercially important species such as the brown shrimp (Crangon crangon), plaice (Pleuronecta platessa), sole (Solea solea) and whiting (Merlangus merlangus) might pose potential health risks if it exceeds 17 g/day, 18 g/day, 26 g/day and 43 g/day respectively. Most PFOS measurements did not exceed the QSbᵢₒₜₐ,ₕₕ of 9.1 ng/g ww, however, the benchmark of 33 ng/g ww targeting the protection of wildlife from secondary poisoning was exceeded for 43% and 28% of the samples in plaice and sole.
Show more [+] Less [-]Sublethal biochemical, histopathological and genotoxicological effects of short-term exposure to ciprofloxacin in catfish Rhamdia quelen
2022
Akiyama Kitamura, Rafael Shinji | Vicentini, Maiara | Perussolo, Maiara Carolina | Lirola, Juliana Roratto | Cirilo dos Santos, Camilla Freitas | Moreira Brito, Júlio César | Cestari, Marta Margarete | Prodocimo, Maritana Mela | Gomes, Marcelo Pedrosa | Silva de Assis, Helena Cristina
Ciprofloxacin (Cipro) is commonly detected in water worldwide, however, the ecotoxicological effects to aquatic biota is still not fully understood. In this study, using multiple biomarkers, it was investigated sublethal effects of short-term exposure to Cipro concentrations (1, 10 and 100 μg.L⁻¹) in the Neotropical catfish Rhamdia quelen compared to non-exposure treatment (Control). After 96 h of exposure, the fishes were anesthetized for blood collection to hematological and genotoxicity biomarkers analysis. After euthanasia, the brain and muscle were sampled for biochemical biomarkers analyses. Gills, liver and posterior kidney for genotoxicity, biochemical and histopathological biomarkers analysis and anterior intestine for histopathological biomarkers analysis. Genotoxicity was observed in all tissues, regardless of the Cipro concentrations. Hematological alterations, such as reduction of the number of erythrocytes and leucocytes, as well as in hematocrit concentration and histopathological damages, such as reduction of microridges in gill epithelium and necrosis in liver and posterior kidney, occurred mainly at 100 μg.L⁻¹. In addition, at 100 μg.L⁻¹, Cipro increased antioxidant system activity (Catalase in liver and posterior kidney). These results demonstrated that under short-term exposure, Cipro causes toxic effects in R. quelen that demands attention and surveillance of environmental aquatic concentrations of this antibiotic.
Show more [+] Less [-]Tissue distribution and bioaccumulation of legacy and emerging per-and polyfluoroalkyl substances (PFASs) in edible fishes from Taihu Lake, China
2021
Chen, Meng | Zhu, Lingyan | Wang, Qiang | Shan, Guoqiang
Tissue distribution of legacy and emerging per-and polyfluoroalkyl substances (PFASs) in several kinds of edible fishes collected from Meiliang bay of Taihu Lake, China were investigated and the related human health risks were assessed. Perfluorooctanesulfonate (PFOS), perfluorooctanesulfonamide (PFOSA) and 6:2 fluorotelomer phosphate diester (6:2 diPAP) were the most abundant legacy perfluoroalkyl acid (PFAA), PFOS related precursor (PreFOS), and the emerging PFASs in all fish tissues, respectively. Similar to the legacy PFAAs, 6:2 diPAP and 6:6 perfluorophosphinate (6:6 PFPiA) had the highest levels in the fish liver, whereas the highest level of PFOSA was in kidney, which might be due to its intensive transformation in fish liver. The concentrations of PFASs were generally positively correlated with the trophic levels. The profiles of PFASs were significantly different among bitterling, crucian and other fish, which might be related to their different metabolic capacities. Bioaccumulation factors (BAFs) of PreFOSs, 6:2 diPAP, and 6:6 PFPiA were lower than those of PFAAs with the same number of perfluorinated carbons. The calculated hazard ratios (HR) of PFOS (Range: 0.0100–0.655) and perfluorooctanoic acid (PFOA) (<0.00200) in all fish muscles were less than 1.0. However, the HR of the ∑PFASs in crucian muscle was 1.04, which implied that frequent consumption of crucian collected from Meiliang Bay might pose potential risks to human health.
Show more [+] Less [-]Reactive oxygen species-evoked endoplasmic reticulum stress mediates 1-nitropyrene-induced epithelial-mesenchymal transition and pulmonary fibrosis
2021
Fu, Lin | Zhao, Hui | Xiang, Ying | Xiang, Hui-Xian | Hu, Biao | Tan, Zhu-Xia | Lu, Xue | Gao, Lan | Wang, Bo | Wang, Hua | Zhang, Cheng | Xu, De-Xiang
1-Nitropyrene (1-NP) is one component of atmospheric fine particles. Previous report revealed that acute 1-NP exposure induced respiratory inflammation. This study aimed to investigate whether chronic 1-NP exposure induces pulmonary fibrosis. Male C57BL6/J mice were intratracheally instilled to 1-NP (20 μg/mouse/week) for 6 weeks. Diffuse interstitial inflammation, a-smooth muscle actin (a-SMA)-positive cells, a marker of epithelial-mesenchymal transition (EMT), and an extensive collagen deposition, measured by Masson staining, were observed in 1-NP-exposed mouse lungs. Pulmonary function showed that lung dynamic compliance (Cydn-min) was reduced in 1-NP-exposed mice. Conversely, inspiratory resistance (Ri) and expiratory resistance (Re) were elevated in 1-NP-exposed mice. Mechanistically, cell migration and invasion were accelerated in 1-NP-exposed pulmonary epithelial cells. In addition, E-cadherin, an epithelial marker, was downregulated, and vimentin, a-SMA and N-cadherin, three mesenchymal markers, were upregulated in 1-NP-exposed pulmonary epithelial cells. Although TGF-β wasn’t altered, phosphorylated Smad2/3 were enhanced in 1-NP-exposed pulmonary epithelial cells. Moreover, reactive oxygen species (ROS) were increased and endoplasmic reticulum (ER) stress was activated in 1-NP-exposed pulmonary epithelial cells. N-Acetylcysteine (NAC), an antioxidant, attenuated 1-NP-evoked excess ROS, ER stress and EMT in pulmonary epithelial cells. Similarly, pretreatment with NAC alleviated 1-NP-caused pulmonary EMT and lung fibrosis in mice. These results demonstrate that ROS-evoked ER stress contributes, at least partially, to 1-NP-induced EMT and pulmonary fibrosis.
Show more [+] Less [-]Diet influences on growth and mercury concentrations of two salmonid species from lakes in the eastern Canadian Arctic
2021
Chételat, John | Shao, Yueting | Richardson, Murray C. | MacMillan, Gwyneth A. | Amyot, Marc | Drevnick, Paul E. | Gilla, Haradīpa | Köck, Günter | Muir, Derek C.G.
Diet, age, and growth rate influences on fish mercury concentrations were investigated for Arctic char (Salvelinus alpinus) and brook trout (Salvelinus fontinalis) in lakes of the eastern Canadian Arctic. We hypothesized that faster-growing fish have lower mercury concentrations because of growth dilution, a process whereby more efficient growth dilutes a fish’s mercury burden. Using datasets of 57 brook trout and 133 Arctic char, linear regression modelling showed fish age and diet indices were the dominant explanatory variables of muscle mercury concentrations for both species. Faster-growing fish (based on length-at-age) fed at a higher trophic position, and as a result, their mercury concentrations were not lower than slower-growing fish. Muscle RNA/DNA ratios were used as a physiological indicator of short-term growth rate (days to weeks). Slower growth of Arctic char, inferred from RNA/DNA ratios, was found in winter versus summer and in polar desert versus tundra lakes, but RNA/DNA ratio was (at best) a weak predictor of fish mercury concentration. Net effects of diet and age on mercury concentration were greater than any potential offset by biomass dilution in faster-growing fish. In these resource-poor Arctic lakes, faster growth was associated with feeding at a higher trophic position, likely due to greater caloric (and mercury) intake, rather than growth efficiency.
Show more [+] Less [-]Regional variation in mercury bioaccumulation among NW Atlantic Golden (Lopholatilus chamaeleonticeps) and Blueline (Caulolatilus microps) Tilefish
2021
Roose, Hunter | Paterson, Gordon | Frisk, Michael G. | Cerrato, Robert M. | Nitschke, Paul | Olin, Jill A.
Mercury (Hg) concentrations in fishes from the NW Atlantic Ocean pose concern due to the importance of this region to U.S. fisheries harvest. In this study, total Hg (THg) concentrations and nitrogen stable isotope (δ¹⁵N) values were quantified in muscle tissues sampled from Golden (Lopholatilus chamaeleonticeps) and Blueline (Caulolatilus microps) Tilefish collected during a fishery-independent survey conducted in the NW Atlantic to compare bioaccumulation patterns between these species. Total Hg concentrations averaged (±SD) 0.4 ± 0.4 μg/g dry weight (d.w.) for L. chamaeleonticeps and 1.1 ± 0.7 μg/g d.w. for C. microps with <2% of all sampled fish, those >70 cm fork length, exceeding the most restrictive USEPA regulatory guidelines for human consumption (THg > 0.46 μg/g w.w.), when converted to wet weight concentrations. The THg concentrations reported here for individuals from the NW Atlantic stock are comparable to those reported for similarly sized individuals collected from the SW Atlantic stock but notably lower than those reported for Gulf of Mexico L. chamaeleonticeps, indicating different Hg exposure and assimilation kinetics for fish from the NW Atlantic, and highlights the broad geographic variability of Hg bioaccumulation among Tilefish stocks. Caulolatilus microps had higher δ¹⁵N values relative to L. chamaeleonticeps and a pattern of decreasing THg concentrations was also present from south to north across the study range. It is concluded that this trophic difference and spatial pattern in Tilefish THg concentrations emphasizes the habitat and resource partitioning mechanisms described for these sympatric species that permits their coexistence in the continental shelf environment. Importantly, regional variability in THg concentrations accentuate the possible roles of fine-scale biotic and abiotic processes that can act to regulate Hg bioaccumulation among individuals and species.
Show more [+] Less [-]