Refine search
Results 1-10 of 58
Ethylene positively regulates Cd tolerance via reactive oxygen species scavenging and apoplastic transport barrier formation in rice
2022
Chen, Haifei | Zhang, Quan | Lv, Wei | Yu, Xiaoyi | Zhang, Zhenhua
Ethylene regulates plant root growth and resistance to environment stress. However, the role and mechanism of ethylene signaling in response to Cd stress in rice remains unclear. Here, we revealed that ethylene signaling plays a positive role in the resistance of rice to Cd toxicity. Blocking the ethylene signal facilitated root elongation under normal conditions, but resulted in severe oxidative damage and inhibition of root growth under Cd stress. Conversely, ethylene signal enhancement by EIN2 overexpression caused root bending, similar to the response of roots to Cd stress, and displayed higher Cd tolerance than the wildtype (WT) plants. Comparative transcriptome analysis indicated EIN2-mediated upregulation of genes involved in flavonoid biosynthesis and peroxidase activity under Cd stress. The synthesis of phenolic acids and flavonoids were positively regulated by ethylene. Thus, the ein2 (ethylene insensitive 2) mutants displayed lower ROS scavenging capacity than the WT. Moreover, a significant increase in Cd accumulation and relatively increased apoplastic flow were observed in the root apex of the ein2 mutant compared with the WT plants. Overall, EIN2-mediated Cd resistance in rice is mediated by the upregulation of flavonoid biosynthesis and peroxidase activity to induce ROS scavenging, and apoplastic transport barrier formation reduces Cd uptake.
Show more [+] Less [-]Hemin-decreased cadmium uptake in pak choi (Brassica chinensis L.) seedlings is heme oxygenase-1 dependent and relies on its by-products ferrous iron and carbon monoxide
2021
Su, Nana | Niu, Mengyang | Liu, Ze | Wang, Lu | Zhu, Zhengbo | Zou, Jianwen | Chen, Yahua | Cui, Jin
Cadmium (Cd) is a major pollutant in farmland, which not only greatly restricts crop production, but also brings a serious threat to human health through entering the food chain. Our previous study showed that hemin treatment could reduce the accumulation of Cd in pak choi seedlings. However, the underlying mechanism remains unclear. In this study, we used non-invasive micro-test technology (NMT) to detect the real-time Cd²⁺ flux from pak choi roots and demonstrated that hemin treatment decreased Cd uptake rather than its translocation within plants. Moreover, through comparing the responses of different chemical treatments in pak choi seedlings and Arabidopsis wild-type and heme oxygenase-1 (HO-1) mutant, we provided evidence that hemin-decreased Cd uptake was HO-1 dependent. Furthermore, analyses of hemin degradation products suggested that the hemin-derived suppression of Cd uptake suppression was probably relying on its degradation by-products, ferrous iron (Fe²⁺) and carbon monoxide (CO), via repressing the expression of a Fe²⁺/Cd²⁺ transporter BcIRT1 in pak choi roots.
Show more [+] Less [-]High level of zinc triggers phosphorus starvation by inhibiting root-to-shoot translocation and preferential distribution of phosphorus in rice plants
2021
Ding, Jingli | Liu, Lu | Wang, Chuang | Shi, Lei | Xu, Fangsen | Cai, Hongmei
Since the urbanization and industrialization are wildly spread in recent decades, the concentration of Zn in soil has increased in various regions. Although the interactions between P and Zn has long been recognized, the effect of high level of Zn on P uptake, translocation and distribution in rice and its molecular mechanism are not fully understood. In this study, we conducted both hydroponic culture and field trial with different combined applications of P and Zn to analyze the rice growth and yield, the uptake, translocation and distribution of P and Zn, as well as the P- and Zn-related gene expression levels. Our results showed that high level of Zn decreased the rice biomass and yield production, and inhibited the root-to-shoot translocation and distribution of P into new leaves by down-regulating P transporter genes OsPT2 and OsPT8 in shoot, which was controlled by OsPHR2-OsmiR399-OsPHO2 module. High Zn supply triggered P starvation signal in root, thereafter increased the activities of both root-endogenous and -secreted acid phosphatase to release more Pi, and induced the expression OsPT2 and OsPT8 to uptake more P for plant growth. On the other hand, high level of P significantly decreased the Zn concentrations in both root and shoot, and the root uptake ability of Zn through altering the expression levels of OsZIPs, which were further confirmed by the P high-accumulated mutant osnla1-2 and OsPHR2-OE transgenic plant. Taken together, we revealed the physiological and molecular mechanisms of P–Zn interactions, and proposed a working model of the cross-talk between P and Zn in rice plants. Our results also indicated that appropriate application of P fertilizer is an effective strategy to reduce rice uptake of excessive Zn when grown in Zn-contaminated soil.
Show more [+] Less [-]tmbim4 protects against triclocarban-induced embryonic toxicity in zebrafish by regulating autophagy and apoptosis
2021
Hu, Zhiyong | He, Liting | Wei, Jiajing | Yufang, Su | Wang, Wei | Fan, Zunpan | Xu, Jia | Zhang, Yuan | Wang, Yongfeng | Peng, Meilin | Zhao, Kai | Zhang, Huiping | Liu, Chunyan
Triclocarban (TCC), an antibacterial agent widely used in personal care products, can affect embryonic development. However, the specific molecular mechanism of TCC-induced embryonic developmental damage remains unclear. In this study, TCC exposure was found to increase the expression of tmbim4 gene in zebrafish embryos. The tmbim4 mutant embryos are more susceptible to TCC exposure than wild-type (WT) embryos, with tmbim4 overexpression reducing TCC-induced embryonic death in the former. Exposure of tmbim4 mutant larvae to 400 μg/L TCC substantially increased apoptosis in the hindbrain and eyes. RNA-sequencing of WT and tmbim4 mutant larvae indicated that knockout of the tmbim4 gene in zebrafish affects the autophagy pathway. Abnormalities in autophagy can increase apoptosis and TCC exposure caused abnormal accumulation of autophagosomes in the hindbrain of tmbim4 mutant zebrafish embryos. Pretreatment of TCC-exposed tmbim4 mutant zebrafish embryos with autophagosome formation inhibitors, substantially reduced the mortality of embryos and apoptosis levels. These results indicate that defects in the tmbim4 gene can reduce zebrafish embryo resistance to TCC. Additionally, apoptosis induced by abnormal accumulation of autophagosomes is involved in this process.
Show more [+] Less [-]Low endogenous NO levels in roots and antioxidant systems are determinants for the resistance of Arabidopsis seedlings grown in Cd
2020
Terrón-Camero, Laura C. | del Val, Coral | Sandalio, Luisa M. | Romero-Puertas, María C.
Cadmium (Cd), which is a toxic non-essential heavy metal capable of entering plants and thus the food chain, constitutes a major environmental and health concern worldwide. An understanding of the tools used by plants to overcome Cd stress could lead to the production of food crops with lower Cd uptake capacity and of plants with greater Cd uptake potential for phytoremediation purposes in order to restore soil efficiency in self-sustaining ecosystems. The signalling molecule nitric oxide (NO), whose function remains unclear, has recently been involved in responses to Cd stress. Using different mutants, such as nia1nia2, nox1, argh1-1 and Atnoa1, which were altered in NO metabolism, we analysed various parameters related to reactive oxygen and nitrogen species (ROS/RNS) metabolism and seedling fitness following germination and growth under Cd treatment conditions for seven days. Seedling roots were the most affected, with an increase in ROS and RNS observed in wild type (WT) seedling roots, leading to increased oxidative damage and fitness loss. Mutants that showed lower NO levels in seedling roots under Cd stress were more resistant than WT seedlings due to the maintenance of antioxidant systems which protect against oxidative damage.
Show more [+] Less [-]Recessivity of pyrethroid resistance and limited interspecies hybridization across Hyalella clades supports rapid and independent origins of resistance
2020
Sever, Haleigh C. | Heim, Jennifer R. | Lydy, Victoria R. | Fung, Courtney Y. | Huff Hartz, Kara E. | Giroux, Marissa S. | Andrzejczyk, Nicolette | Major, Kaley M. | Poynton, Helen C. | Lydy, Michael J.
Several populations of the amphipod, Hyalella azteca, have developed resistance to pyrethroid insecticides due to non-target exposure, but the dominance of the resistance trait is unknown. The current study investigated the dominance level of point mutations in natural populations of insecticide-resistant H. azteca and determined whether H. azteca from different clades with and without resistant alleles can hybridize and produce viable offspring. A parent generation (P₀) of non-resistant homozygous wild type H. azteca was crossbred with pyrethroid-resistant homozygous mutant animals and the tolerance of the filial 1 (F₁) generation to the pyrethroid insecticide, permethrin, was measured. Then the genotypes of the F₁ generation was examined to assure heterozygosity. The resistant parents had permethrin LC₅₀ values that ranged from 52 to 82 times higher than the non-resistant animals and both crossbreeding experiments produced heterozygous hybrid offspring that had LC₅₀ values similar to the non-resistant H. azteca parent. Dominance levels calculated for each of the crosses showed values close to 0, confirming that the L925I and L925V mutations were completely recessive. The lack of reproduction by hybrids of the C x D breeding confirmed that these clades are reproductively isolated and therefore introgression of adaptive alleles across these clades is unlikely. Potential evolutionary consequences of this selection include development of population bottlenecks, which may arise leading to fitness costs and reduced genetic diversity of H. azteca.
Show more [+] Less [-]Developmental exposure to polychlorinated biphenyls (PCBs) in the maternal diet causes host-microbe defects in weanling offspring mice
2019
Rude, Kavi M. | Pusceddu, Matteo M. | Keogh, Ciara E. | Sladek, Jessica A. | Rabasa, Gonzalo | Miller, Elaine N. | Sethi, Sunjay | Keil, Kimberly P. | Pessah, Isaac N. | Lein, Pamela J. | Gareau, Mélanie G.
The gut microbiota is important for maintaining homeostasis of the host. Gut microbes represent the initial site for toxicant processing following dietary exposures to environmental contaminants. The diet is the primary route of exposure to polychlorinated biphenyls (PCBs), which are absorbed via the gut, and subsequently interfere with neurodevelopment and behavior. Developmental exposures to PCBs have been linked to increased risk of neurodevelopmental disorders (NDD), including autism spectrum disorder (ASD), which are also associated with a high prevalence of gastrointestinal (GI) distress and intestinal dysbiosis. We hypothesized that developmental PCB exposure impacts colonization of the gut microbiota, resulting in GI pathophysiology, in a genetically susceptible host. Mouse dams expressing two heritable human mutations (double mutants [DM]) that result in abnormal Ca²⁺ dynamics and produce behavioral deficits (gain of function mutation in the ryanodine receptor 1 [T4826I-RYR1] and a human CGG repeat expansion [170–200 CGG repeats] in the fragile X mental retardation gene 1 [FMR1 premutation]). DM and congenic wild type (WT) controls were exposed to PCBs (0–6 mg/kg/d) in the diet starting 2 weeks before gestation and continuing through postnatal day 21 (P21). Intestinal physiology (Ussing chambers), inflammation (qPCR) and gut microbiome (16S sequencing) studies were performed in offspring mice (P28–P30). Developmental exposure to PCBs in the maternal diet caused significant mucosal barrier defects in ileum and colon (increased secretory state and tight junction permeability) of juvenile DM mice. Furthermore, PCB exposure increased the intestinal inflammatory profile (Il6, Il1β, and Il22), and resulted in dysbiosis of the gut microbiota, including altered β-diversity, in juvenile DM mice developmentally exposed to 1 mg/kg/d PCBs when compared to WT controls. Collectively, these findings demonstrate a novel interaction between PCB exposure and the gut microbiota in a genetically susceptible host that provide novel insight into environmental risk factors for neurodevelopmental disorders.
Show more [+] Less [-]2,2′,4,4′-tetrabromodiphenyl ether induces germ cell apoptosis through oxidative stress by a MAPK-mediated p53-independent pathway
2018
You, Xinyue | Xi, Jing | Liu, Weiying | Cao, Yiyi | Tang, Weifeng | Zhang, Xinyu | Yu, Yingxin | Luan, Yang
2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47), a representative congener of polybrominated diphenyl ethers in the environment, is known to have reproductive toxicity. However, the underlying mechanisms remain to be clarified, especially in in vivo systems. In the present study, we employed Caenorhabditis elegans to study the effects of BDE-47 on reproduction. Our results showed that BDE-47 impaired worm fecundity and induced germ cell apoptosis. To elucidate the mechanisms, DNA damage and oxidative stress induction were investigated by determining the numbers of foci formation in transgenic worms expressing HUS-1::GFP and the levels of reactive oxygen species, respectively. We found that BDE-47 induced oxidative stress but not DNA damage, and treatment with the antioxidant, N-acetyl-L-cysteine, completely abrogated BDE-47-induced germ cell apoptosis. In addition, the apoptosis was blocked in mutants carrying mek-1, sek-1 or abl-1 loss-of-function alleles, but not in the p53/cep-1 deficient worms, suggesting that the mitogen-activated protein kinase (MAPK) signaling cascade was essential for BDE-47-induced germ cell apoptosis and p53/cep-1 was not required. Moreover, the apoptosis in the strains deficient for DNA damage response was not suppressed under BDE-47 treatment. Overall, we demonstrated that BDE-47 could induce oxidative stress and subsequent germ cell apoptosis in Caenorhabditis elegans through a MAPK-mediated p53-independent pathway.
Show more [+] Less [-]Effect of mercury on the polyphosphate level of alga Chlamydomonas reinhardtii
2018
Samadani, Mahshid | Dewez, David
In this study, the accumulation and toxicity effect of 1–7 μM of Hg was determined during 24–72 h on two strains of Chlamydomonas reinhardtii, CC-125 and CC-503 as a cell wall-deficient mutant, by monitoring the growth rate and the maximum quantum yield of Photosystem II. In addition, the level of extracytoplasmic polyphosphates (polyP related to the cell wall) was determined to understand the polyP physiological role in Hg-treated algal cells. The results showed that the polyP level was higher in the strain CC-125 compared to CC-503. When algal cells were exposed to 1 and 3 μM of Hg, the accumulation of Hg was correlated with the degradation of polyP for both strains. These results suggested that the degradation of polyP participated in the sequestration of Hg. In fact, this mechanism might explain at 72 h the recovery of the polyP level, the efficiency of maximum PSII quantum yield, the low inhibition of growth rate, and the low accumulated Hg in algal biomass. Under the effect of 5 and 7 μM of Hg, the degradation of polyP was complete and could not be recovered, which was caused by a high accumulation and toxicity of Hg already at 24 h. Our results demonstrated that the change of polyP level was correlated with the accumulation and effect of Hg on algal cells during 24–72 h, which can be used as a biomarker of Hg toxicity. Therefore, this study suggested that extracytoplasmic polyP in C. reinhardtii contributed to the cellular tolerance for Hg.
Show more [+] Less [-]The role of root hairs in cadmium acquisition by barley
2011
Zheng, Ruilun | Li, Huafen | Jiang, Rongfeng | Römheld, Volker | Zhang, Fusuo | Zhao, Fang-Jie
The role of root hairs in Cd acquisition from soil was investigated in three pot experiments using a root hairless mutant (bald root barley, brb) and its wild-type (WT) cultivar of barley (Hordeum vulgare). brb had significantly lower concentrations and lower total amounts of Cd in shoots than WT. The Cd uptake efficiency based on total root length was 8–45% lower in brb than in WT. The difference between brb and WT increased with increasing extractable Cd in soil under the experimental conditions used. Additions of phosphate to soil decreased Cd extractability. Both soil and foliar additions of phosphate decreased root length, and root hair formation in WT. These effects resulted in decreased Cd uptake with increasing P supply. Cd uptake in WT correlated significantly with root length, root hair length and density, and soil extractable Cd. Root hairs contribute significantly to Cd uptake by barley.
Show more [+] Less [-]