Refine search
Results 1-10 of 35
Impacts of bio-stimulants on pyrene degradation, prokaryotic community compositions, and functions
2021
Aḥmad, Manẓūr | Wang, Pandeng | Li, Jia-Ling | Wang, Renfei | Duan, Li | Luo, Xiaoqing | Irfan, Muhammad | Peng, Ziqi | Yin, Lingzi | Li, Wen-Jun
Bio-stimulation of the indigenous microbial community is considered as an effective strategy for the bioremediation of polluted environments. This examination explored the near effects of various bio-stimulants on pyrene degradation, prokaryotic community compositions, and functions using 16S rRNA amplicon sequencing and qPCR. At first, the results displayed significant differences (p < 0.05) between the prokaryotic community structures of the control group, PYR (contains pyrene only), and bio-stimulants amended groups. Among the bio-stimulants, biochar, oxalic acid, salicylate, NPK, and ammonium sulfate augmented the pyrene degradation potential of microbial communities. Moreover, the higher abundance of genera, such as Flavobacterium, Hydrogenophaga, Mycobacterium, Rhodococcus, Flavihumibacter, Pseudomonas, Novosphingobium, etc., across the treatments indicated that these genera play a vital role in pyrene metabolism. Based on the higher abundance of GP-RHD and nidA genes, we speculated that Gram-positive prokaryotic communities are more competent in pyrene dissipation than Gram-negative. Furthermore, the marked abundance of nifH, and pqqC genes in the NPK and SA treatments, respectively, suggested that different bio-stimulants might enrich certain bacterial assemblages. Besides, the significant distinctions (p < 0.05) between the bacterial consortia of HA (humic acid) and SA (sodium acetate) groups from NPK, OX (oxalic acid), UR (urea), NH4, and SC (salicylate) groups also suggested that different bio-stimulants might induce distinct ecological impacts influencing the succession of prokaryotic communities in distinct directions. This work provides new insight into the bacterial degradation of pyrene using the bio-stimulation technique. It suggests that it is equally important to investigate the community structure and functions along with studying their impacts on degradation when devising a bio-stimulation technology.
Show more [+] Less [-]Indoor heating triggers bacterial ecological links with tap water stagnation during winter: Novel insights into bacterial abundance, community metabolic activity and interactions
2021
Zhang, Haihan | Xu, Lei | Huang, Tinglin | Liu, Xiang | Miao, Yutian | Liu, Kaiwen | Qian, Xuming
The overnight stagnation of tap water in plumbing systems can lead to water quality deterioration. Meanwhile, the indoor heating can improve the indoor temperature in cold areas during winter, which may affect the quality of tap water during stagnation. However, indoor heating drives bacterial ecological links with tap water stagnation during winter are not well understood. The results indicated that the water temperature increased significantly after stagnation during indoor heating periods. Moreover, the average intact cell number and total adenosine triphosphate (ATP) concentration increased 1.53-fold and 1.35-fold after stagnation, respectively (P < 0.01). In addition, the increase in the ATP per cell number indicated that the combined effects of stagnation and indoor heating could enhance the bacterial activity. Biolog data showed that the bacterial community metabolic capacity was significantly higher in stagnant water than that of fresh water. Co-occurrence networks suggested that the bacterial metabolic profile changed after stagnation during the heating periods. DNA analysis indicated that the composition of the bacterial community changed dramatically after stagnation. The abundances of potential pathogens such as Mycobacterium sp. and Pseudomonas sp. also increased after stagnation. These results will give novel insights on comprehensive understanding the combined effects of indoor heating and overnight stagnation on the water bacterial community ecology of plumbing systems, and provide a scientific basis for tap water quality management after overnight stagnation during the indoor heating periods.
Show more [+] Less [-]Effects of tetracycline residuals on humification, microbial profile and antibiotic resistance genes during vermicomposting of dewatered sludge
2019
Xia, Hui | Chen, Jingyang | Chen, Xuemin | Huang, Kui | Wu, Ying
Vermicomposting is a green technology used in the recycling of sewage sludge using the joint action of earthworms and microorganisms. Although tetracycline is present in abundance in sewage sludge, little attention has been given to its influence on vermicomposts. This study investigated the effects of different tetracycline concentrations (0, 100, 500 and 1000 mg/kg) on the decomposition of organic matter, microbial community and antibiotic resistance genes (ARGs) during vermicomposting of spiked sludge. The results showed that 100 mg/kg tetracycline could stimulate earthworms’ growth, accompanied by the highest humification and decomposition rates of organic matter in the sludge. The abundance of active microbial cells and diversity decreased with the increase in tetracycline concentrations. The member of Bacteroidetes dominated in the tetracycline spiked treatments, especially in the higher concentration treatments. Compared to its counterparts, the addition of tetracycline significantly increased the abundances of ARGs (tetC, tetM, tetX, tetG and tetW) and Class 1 integron (int-1) by 4.7–186.9 folds and 4.25 folds, respectively. The genera of Bacillus and Mycobacterium were the possible bacterial pathogen hosts of ARGs enriched in tetracycline added group. This study suggests that higher concentration of tetracycline residual can modify microbial communities and increase the dissemination risk of ARGs for final sludge vermicompost.
Show more [+] Less [-]The relationships between soil physicochemical properties, bacterial communities and polycyclic aromatic hydrocarbon concentrations in soils proximal to coking plants
2022
Du, Jingqi | Liu, Jinxian | Jia, Tong | Chai, Baofeng
Microbial degradation of polycyclic aromatic hydrocarbons (PAHs) is the major channel for their decontamination from different environments. Aerobic and anaerobic biodegradations of PAHs in batch reactors with single or multiple bacterial strains have been intensively studied, but the cooperative mechanism of functional PAH-degrading populations at the community level under field conditions remains to be explored. We determined the composition of PAH-degrading populations in the bacterial community and PAHs in farmland and wasteland soils contaminated by coking plants using high-throughput sequencing and high-performance liquid chromatography (HPLC), respectively. The results indicated that the PAH content of farmland was significantly lower than that of wasteland, which was attributed to the lower content of low molecular weight (LMW) PAHs and benzo [k]fluoranthene. The soil physicochemical properties were significantly different between farmland and wasteland. The naphthalene content was related to the soil organic carbon (SOC) and pH, while phenanthrene was related to the nitrate nitrogen (NO₃⁻-N) and water content (WC). The pH, nitrite (NO₂⁻-N), SOC, NO₃⁻-N and WC were correlated with the content of high molecular weight (HMW) PAHs and total PAHs. The relative abundances of the phyla Actinobacteria, Chloroflexi, Acidobacteria, and Firmicutes and the genera Nocardioides, Bacillus, Lysobacter, Mycobacterium, Streptomyces, and Steroidobacter in farmland soil were higher than those in wasteland soil. The soil physicochemical characteristics of farmland increased the diversities of the PAH degrader and total bacterial communities, which were significantly negatively related to the total PAHs and LMW PAHs. Subsequently, the connectivity and complexity of the network in farmland were lower than those in wasteland, while the module containing a module hub capable of degrading PAHs was identified in the network of farmland soil. Structural equation modelling (SEM) analysis showed that the soil characteristics and optimized abundance and diversity of the bacterial community in farmland were beneficial for the dissipation efficiency of PAHs.
Show more [+] Less [-]Occurrence and distribution of PAHs and microbial communities in nearshore sediments of the Knysna Estuary, South Africa
2021
Liu, Xinran | Liu, Min | Zhou, Limin | Hou, Lijun | Yang, Yi | Wu, Dianming | Meadows, Michael E. | Li, Zhanhai | Tong, Chunfu | Gu, Jinghua
This study investigated the polycyclic aromatic hydrocarbons (PAHs) occurrence, and their impact on the microbial community and PAH-degrading genera and genes in the Knysna Estuary of South Africa. The results reveal that the estuary exhibits low PAH levels (114.1–356.0 ng g⁻¹). Ignavibacteriae and Deferribacteres, as well as Proteobacteria and Bacteroidetes, are keystone phyla. Among measured environmental factors, total organic carbon (TOC), nutrients such as nitrite and nitrate, metals as Al, Cr, Cu, Ni, Pb and Zn, and environmental properties (pH and salinity) are primary contributors to structuring the bacterial community assemblage. The abundance of alpha subunit genes of the PAH-ring hydroxylating dioxygenases (PAH-RHDα) of Gram-negative bacteria lies in the range of (2.0–4.2) × 10⁵ copies g⁻¹, while that of Gram-positive bacteria ranges from 3.0 × 10⁵ to 1.3 × 10⁷ copies g⁻¹. The PAH-degrading bacteria account for up to 0.1% of the bacterial community and respond mainly to nitrate, TOC and salinity, while PAHs at low concentration are not significant influencing factors. PAH degraders such as Xanthomonadales, Pseudomonas, and Mycobacterium, which play a central role in PAH-metabolization coupled with other biogeochemical processes (e.g. iron cycling), may contribute to maintaining a healthy estuarine ecosystem. These results are important for developing appropriate utilization and protection strategies for pristine estuaries worldwide.
Show more [+] Less [-]Metagenomic analysis reveals mechanisms of atrazine biodegradation promoted by tree species
2020
Aguiar, Luciana Monteiro | Souza, Matheus de Freitas | de Laia, Marcelo Luiz | de Oliveira Melo, Janaína | Costa, Marcia Regina da | Gonçalves, Janaína Fernandes | Silva, Daniel Valadão | dos Santos, José Barbosa
Metagenomics has provided the discovery of genes and metabolic pathways involved in the degradation of xenobiotics. Some microorganisms can metabolize these compounds, potentiating phytoremediation in association with plant. This study aimed to study the metagenome and the occurrence of atrazine degradation genes in rhizospheric soils of the phytoremediation species Inga striata and Caesalphinea ferrea. The genera of microorganisms predominant in the rhizospheric soils of I. striata and C. ferrea were Mycobacterium, Conexibacter, Bradyrhizobium, Solirubrobacter, Rhodoplanes, Streptomyces, Geothrix, Gaiella, Nitrospira, and Haliangium. The atzD, atzE, and atzF genes were detected in the rhizospheric soils of I. striata and atzE and atzF in the rhizospheric soils of C. ferrea. The rhizodegradation by both tree species accelerates the degradation of atrazine residues, eliminating toxic effects on plants highly sensitive to this herbicide. This is the first report for the species Agrobacterium rhizogenes and Candidatus Muproteobacteria bacterium and Micromonospora genera as atrazine degraders.
Show more [+] Less [-]Azoxystrobin dissipation and its effect on soil microbial community structure and function in the presence of chlorothalonil, chlortetracycline and ciprofloxacin
2020
Han, Lingxi | Liu, Yalei | Fang, Kuan | Zhang, Xiaolian | Liu, Tong | Wang, Fenglong | Wang, Xiuguo
The residual characteristics and the adsorption-desorption behaviors of azoxystrobin (AZO) as well as the soil ecological effects in the individual repeated treatments of AZO and its combination with chlorothalonil (CTL), chlortetracycline (CTC) and ciprofloxacin (CIP) were systematically studied in organic manure (OM)-amended soil under laboratory conditions. The presence of CTL, CTC, and CIP, both individually and combined, decreased the sorption affinity of AZO with the Freundlich adsorption and desorption coefficient decreasing by 0.3–24.2%, and CTC and CIP exhibited greater adverse effects than CTL. AZO dissipated slowly and the residues significantly accumulated during ten repeated treatments. The dissipation of AZO was inhibited to different degrees in the combined treatments. Biolog analysis revealed that the soil microbial functional diversity in the OM-soil + AZO and OM-soil + AZO + CTL treatments was higher than that in the OM-soil treatment during the former three repeated treatments, but which was inhibited during the latter seven repeated treatments. The soil microbial functional diversity in the OM-soil + AZO + CTC, OM-soil + AZO + CIP and OM-soil + AZO + CTL + CTC + CIP treatments was inhibited during the ten repeated treatments compared with OM-soil treatment. Metagenomic results showed that all repeated treatments significantly increased the relative abundance of Actinobacteria, but significantly decreased that of Proteobacteria and Firmicutes during the ten repeated treatments. Furthermore, the relative abundance of soil dominant bacterial genera Rhodococcus, Mycobacterium and Arthrobacter in all the repeated treatments significantly increased by 1.5–1283.9% compared with the OM-soil treatment. It is concluded that coexistence of CTL, CTC and CIP, both individually and combined, with AZO can inhibit the dissipation of AZO, reduce the adsorption affinity of AZO on soil, and alter the soil microbial community structure and functional diversity.
Show more [+] Less [-]Linking aerosol characteristics of size distributions, core potential pathogens and toxic metal(loid)s to wastewater treatment process
2020
Yang, Dang | Jiang, Lu | Han, Yunping | Liu, Jianwei | Wang, Xiaodong | Yan, Xu | Liu, Junxin
Wastewater treatment plants (WWTPs) play important roles in water purification but are also important source of aerosols. However, the relationship between aerosol characteristics and wastewater treatment process remains poorly understood. In this study, aerosols were collected over a 24-month period from a WWTP using a modified anaerobic-anoxic-oxic process. The aerated tank (AerT) was characterized by the highest respiratory fraction (RF) concentrations (861–1525 CFU/m³) and proportions (50.76%–65.96%) of aerosol particles. Fourteen core potential pathogens and 15 toxic metal(loid)s were identified in aerosols. Mycobacterium was the genus that aerosolized most easily in fine grid, pre-anoxic tank, and AerT. High wastewater treatment efficiency may increase the emission of RF and core potential pathogens. The median size of activated sludge, richness of core potential pathogens in wastewater, and total suspended particulates were the most influential factors directly related to the RF proportions, core community of potential pathogens, and composition of toxic metal(loid)s in WWTP aerosols, respectively. Relative humidity, temperature, input and removal of biochemical oxygen demand, dissolved oxygen, and mixed liquor suspended solids could also directly or indirectly affect the aerosol characteristics. This study enhances the mechanistic understanding of linking aerosol characteristics to treatment processes and has important implications for targeted manipulation.
Show more [+] Less [-]Responsiveness change of biochemistry and micro-ecology in alkaline soil under PAHs contamination with or without heavy metal interaction
2020
Wang, Can | Luo, Yao | Tan, Hang | Liu, Huakang | Xu, Fei | Xu, Heng
Co-presence of organic pollutants and heavy metals in soil is causing increasing concerns, but the lack of knowledge of relation between soil ecology and pollutant fate is limiting the developing of specific control strategy. This study investigated soil change under pyrene stress and its interaction with cadmium (Cd). Soil physicochemical properties were not seriously influenced. However, pollutants’ presence easily varied soil microbial activity, quantity, and diversity. Under high-level pyrene, Cd presence contributed to soil indigenous microorganisms’ adaption and soil microbial community structure stability. Soils with both pyrene and Cd presented 7.11–12.0% higher pyrene degradation compared with single pyrene treatment. High-throughput sequencing analysis indicated the proportion of Mycobacterium sp., a commonly known PAHs degrader, increased to 25.2–48.5% in treatments from 0.52% in control. This phenomenon was consistent with the increase of PAHs probable degraders (the ratio increased to 2.86–6.57% from 0.24% in control). Higher Cd bioavailability was also observed in soils with both pollutants than that with Cd alone. And Cd existence caused the elevation of Cd resistant bacterium Limnobacter sp. (increased to 12.2% in CdCK from 2.06% in control). Functional gene prediction also indicated that abundance of genes related to nutrient metabolism decreased dramatically with pollutants, while the abundances of energy metabolism, lipid metabolism, secondary metabolites biosynthesis-related genes increased (especially for aromatic compound degradation related genes). These results indicated the mutual effect and internal-interaction existed between pollutants and soils resulted in pollutants’ fate and soil microbial changes, providing further information regarding pollutants dissipation and transformation under soil microbial response.
Show more [+] Less [-]Transcriptional response of Mycobacterium sp. strain A1-PYR to multiple polycyclic aromatic hydrocarbon contaminations
2018
Yuan, Ke | Xie, Xiuqin | Wang, Xiaowei | Lin, Li | Yang, Lihua | Luan, Tiangang | Chen, Baowei
Cometabolism mechanisms of organic pollutants in environmental microbes have not been fully understood. In this study, a global analysis of Mycobacterium sp. strain A1-PYR transcriptomes on different PAH substrates (single or binary of pyrene (PYR) and phenanthrene (PHE)) was conducted. Comparative results demonstrated that expression levels of 23 PAH degradation enzymes were significantly higher in the binary substrate than in the PYR-only one. These enzymes constituted an integrated enzymatic system to actualize all transformation steps of PYR, and most of their encoded genes formed a novel gene cascade in the genome of strain A1-PYR. The roles of different genotypes of enzymes in PYR cometabolism were also discriminated even though all of their gene sequences were presented in the genome of this strain. NidAB and PdoA2B2 instead of NidA3B3 served the initial oxidization of PAHs, and PcaL replaced PcaCD to catalyze the formation of 3-oxoadipate. Novel genes associated with PYR cometabolism was also predicted by the relationships between their transcription profiles and PYR removal. The results showed that ABC-type transporters probably played important roles in the transport of PAHs and their metabolites through cell membrane, and [4Fe-4S] ferredoxin might be essential for dioxygenases (NidAB and PdoA2B2) to achieve oxidative activities. This study provided molecular insight in that microbial degrader subtly cometabolized recalcitrant PAHs with relatively more degradable ones.
Show more [+] Less [-]