Refine search
Results 1-4 of 4
Essential oil from Negramina (Siparuna guianensis) plants controls aphids without impairing survival and predatory abilities of non-target ladybeetles
2019
Toledo, Pedro F.S. | Ferreira, Taciano P. | Bastos, Isabela M.A.S. | Resende, Sarah M. | Viteri Jumbo, Luis O. | Didonet, Julcemar | Andrade, Bruno S. | Melo, Tarcisio S. | Smagghe, Guy | Oliveira, Eugênio E. | Aguiar, Raimundo W.S.
Plant essential oils are regarded as interesting alternative tools to be integrated into the management of pest insects. However, as they generally consist of mixtures of numerous molecules, the physiological basis for their action is unresolved. Here, we evaluated the effects of essential oil of the Neotropical plant Siparuna guianensis Aubl., commonly known as Negramina, against an important pest insect: the green peach aphid Myzus persicae (Sulzer), and also in two non-target natural enemies: the ladybeetle predators Coleomegilla maculata (DeGeer) and Eriopis connexa (Germar). In addition, we conducted a computational docking analysis for predicting the physical interactions between the two Negramina essential oil major constituents: β-myrcene and 2-undocanone, and the transient receptor potential (TRP) channels as potential binding receptors in the aphid and ladybeetles. As the most important results, Negramina essential oil caused mortality in M. persicae aphids with an LC95 = 1.08 mg/cm2, and also significantly repelled the aphids at concentrations as low as 0.14 mg/cm2. Our computational docking analysis reinforced such selectivity actions as the Negramina essential oil major compounds (i.e., β-myrcene and 2-undocanone) bound to the TRP channels of M. persicae but not to ladybeetle-related TRP channels. Interestingly, the exposure to the Negramina essential oil did not affect the predatory abilities of C. maculata but increased the abilities of E. connexa to prey upon M. persicae. Collectively, our findings provided a physiological basis for the insecticidal and selectivity potential of Negramina essential oil, reinforcing its potential as a tool to be used in integrated pest control programs.
Show more [+] Less [-]Are there fitness costs of adaptive pyrethroid resistance in the amphipod, Hyalella azteca?
2018
Heim, Jennifer R. | Weston, Donald P. | Major, Kaley | Poynton, Helen | Huff Hartz, Kara E. | Lydy, Michael J.
Pyrethroid-resistant Hyalella azteca with voltage-gated sodium channel mutations have been identified at multiple locations throughout California. In December 2013, H. azteca were collected from Mosher Slough in Stockton, CA, USA, a site with reported pyrethroid (primarily bifenthrin and cyfluthrin) sediment concentrations approximately twice the 10-d LC50 for laboratory-cultured H. azteca. These H. azteca were shipped to Southern Illinois University Carbondale and have been maintained in pyrethroid-free culture since collection. Even after 22 months in culture, resistant animals had approximately 53 times higher tolerance to permethrin than non-resistant laboratory-cultured H. azteca. Resistant animals held in culture also lacked the wild-type allele at the L925 locus, and had non-synonymous substitutions that resulted in either a leucine-isoleucine or leucine-valine substitution. Additionally, animals collected from the same site nearly three years later were again resistant to the pyrethroid permethrin. When resistant animals were compared to non-resistant animals, they showed lower reproductive capacity, lower upper thermal tolerance, and the data suggested greater sensitivity to, 4, 4′-dichlorodiphenyltrichloroethane (DDT), copper (II) sulfate, and sodium chloride. Further testing of the greater heat and sodium chloride sensitivity of the resistant animals showed these effects to be unrelated to clade association. Fitness costs associated with resistance to pyrethroids are well documented in pest species (including mosquitoes, peach-potato aphids, and codling moths) and we believe that H. azteca collected from Mosher Slough also have fitness costs associated with the developed resistance.
Show more [+] Less [-]Uptake and bioaccumulation of Cry toxins by an aphidophagous predator
2016
Paula, Débora P. | Andow, David A.
Uptake of Cry toxins by insect natural enemies has rarely been considered and bioaccumulation has not yet been demonstrated. Uptake can be demonstrated by the continued presence of Cry toxin after exposure has stopped and gut contents eliminated. Bioaccumulation can be demonstrated by showing uptake and that the concentration of Cry toxin in the natural enemy exceeds that in its food. We exposed larvae of the aphidophagous predator, Harmonia axyridis, to Cry1Ac and Cry1F through uniform and constant tritrophic exposure via an aphid, Myzus persicae, and looked for toxin presence in the pupae. We repeated the experiment using only Cry1F and tested newly emerged adults. Both Cry toxins were detected in pupae, and Cry1F was detected in recently emerged, unfed adults. Cry1Ac was present 2.05 times and Cry1F 3.09 times higher in predator pupae than in the aphid prey. Uptake and bioaccumulation in the third trophic level might increase the persistence of Cry toxins in the food web and mediate new exposure routes to natural enemies.
Show more [+] Less [-]Air pollution and agricultural aphid pests. I: Fumigation experiments with SO(2) and NO(2)
1990
Houlden, G. | McNeill, S. | Aminu-Kano, M. | Bell, J.N.B. (Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY (United Kingdom))