Refine search
Results 1-10 of 14
“Smart” nanosensors for early detection of corrosion: Environmental behavior and effects on marine organisms
2022
Martins, Roberto Borges | Figueiredo, Joana | Sushkova, Alesia | Wilhelm, Manon | Tedim, João | Loureiro, Susana
Corrosion is an environmental and economic global problem. “Smart” or stimuli-responsive colorimetric nanosensors for maritime coatings have been proposed as an asset to overcome the limitations of the current monitoring techniques by changing color in the presence of triggers associated with the early stages of corrosion. Layered double hydroxides (Zn–Al LDH; Mg–Al LDH) and silica mesoporous nanocapsules (SiNC) were used as precursor nanocarriers of active compounds: hexacyanoferrate ions ([Fe(CN)₆]³⁻) and phenolphthalein (PhPh), respectively. Additionally, the safer-by-design principles were employed to optimize the nanosensors in an eco-friendly perspective (e.g., regular vs. warm-washed SiNC-PhPh; immobilization using different carriers: Zn–Al LDH-[Fe(CN)₆]³⁻ vs. Mg–Al LDH-[Fe(CN)₆]³⁻). Therefore, the present study aims to assess the environmental behavior in saltwater and the toxic effects of the nanosensors, their nanocarriers, and the active compounds on the marine microalgae Tetraselmis chuii and the crustacean Artemia salina. Briefly, tested compounds exhibited no acute toxic effects towards A. salina (NOEC = 100 mg/L), apart from SiNC-PhPh (LC₅₀ = 2.96 mg/L) while tested active compounds and nanosensors caused significant growth inhibition on T. chuii (lowest IC₅₀ = 0.40 mg/L for SiNC-PhPh). The effects of [Fe(CN)₆]³⁻ were similar regardless of the nanocarrier choice. Regarding SiNC-PhPh, its toxicity can be decreased at least twice by simply reinforcing the nanocapsules washing, which contributes to the removal (at least partially) of the surfactants residues. Thus, implementing safe-by-design strategies in the early stages of research proved to be critical, although further progress is still needed towards the development of truly eco-friendly nanosensors.
Show more [+] Less [-]Toxicity of engineered micro- and nanomaterials with antifouling properties to the brine shrimp Artemia salina and embryonic stages of the sea urchin Paracentrotus lividus
2019
Gutner-Hoch, Eldad | Martins, Roberto Borges | Maia, Frederico | Oliveira, Tania | Shpigel, Muki | Weis, Michal | Tedim, João | Benayahu, Yehuda
Antifouling booster biocides are chemicals used in protective paints to tackle the adhesion of fouling organisms to maritime artificial structures. However, they are also known to exert toxic effects on non-target organisms. Recent research developments have highlighted the potential use of engineered micro/nanomaterials (EMNMs) as carriers of antifouling booster biocides in order to control their release and to reduce the harmful effects on living biota. In the present study, we sought to assess the toxicity of two commercially-available booster biocides: (zinc pyrithione (ZnPT) and copper pyrithione (CuPT)); three unloaded engineered micro/nanomaterials (EMNMs); layered double hydroxides (LDH), silica nanocapsules (SiNC), polyurea microcapsules (PU); , and six novel EMNMs (loaded with each of the two biocides). The exposure tests were conducted on the larval stage (nauplii) of the brine shrimp Artemia salina and on two embryonic developmental stages of the European purple sea urchin Paracentrotus lividus. The findings indicate that the unloaded LDH and PU (i.e. both biocide-free EMNMs) have non/low toxic effects on both species. The unloaded SiNC, in contrast, exerted a mild toxic effect on the A. salina nauplii and P. lividus embryos. The free biocides presented different toxicity values, with ZnPT being more toxic than CuPT in the P. lividus assays. LDH-based pyrithiones demonstrated lower toxicity compared to the free forms of the state-of-the-art compounds, and constitute good candidates in terms of their antifouling efficacy.
Show more [+] Less [-]Acute and chronic effects of innovative antifouling nanostructured biocides on a tropical marine microcrustacean
2021
Jesus, Édipo Paixão Silva de | Figueirêdo, Lívia Pitombeira de | Maia, Frederico | Martins, Roberto Borges | Nilin, Jeamylle
This study aimed to investigate the toxicity of innovative antifouling nanostructured biocides DCOIT and silver associated to silica nanocapsules (SiNC) on the tropical microcrustacean Mysidopsis juniae. The toxicity of the tested compounds can be summarized as follows (acute tests): DCOIT > SiNC-Ag > SiNC-DCOIT > SiNC-DCOIT-Ag > SiNC > Ag; (chronic tests): SiNC-Ag > SiNC-DCOIT-Ag > DCOIT > Ag > SiNC, although it was not possible to determine the chronic toxicity of SiNC-DCOIT. In general, our data demonstrated that mysids were more sensitive than most temperate species, and it was possible to conclude that the combination SiNC-DCOIT-Ag showed less acute toxicity in comparison to the isolated active compounds, reinforcing data obtained for species from temperate environments on the potential use of nanomaterial to reduce toxicity to non-target species. However, despite representing less risk to the environment, the compound SiNC-DCOIT-Ag is still very toxic to the non-target tropical mysid.
Show more [+] Less [-]Toxicity of innovative antifouling additives on an early life stage of the oyster Crassostrea gigas: short- and long-term exposure effects
2022
de Campos, Bruno Galvão | do Prado e Silva, Mariana Bruni Marques | Avelelas, Francisco | Maia, Frederico | Loureiro, Susana | Perina, Fernando | Abessa, Denis Moledo de Souza | Martins, Roberto Borges
Recent advances in nanotechnology have allowed the encapsulation of hazardous antifouling (AF) biocides in silica mesoporous nanocapsules (SiNC) reducing their short-term toxicity. However, the chronic effects of such novel nanoadditives remain understudied. The present study aimed to assess short- and long-term sub-lethal effects of soluble forms (DCOIT and Ag) and nanostructured forms (SiNC-DCOIT and SiNC-DCOIT-Ag) of two AF biocides and the “empty” nanocapsule (SiNC) on juveniles of Crassostrea gigas after 96 h and 14 days of exposure. Juvenile oysters exposed for a short period to free DCOIT and AgNO₃ presented worse physiological status comparing with those exposed to the nanostructured forms. The long-term exposure to DCOIT and Ag⁺ caused an extensive biochemical impairment comparing with the tested nanomaterials, which included oxidative damage, activation of the antioxidant defense system, and neurotransmission impairment. Despite the negative effects mostly observed on the health condition index and AChE, the encapsulation of the abovementioned AF biocides into SiNC seems to be a technological advantage towards the development of AF nanoadditives with lower long-term toxicity comparing with the soluble forms of such biocides.
Show more [+] Less [-]Chemically characterized nanoencapsulated Homalomena aromatica Schott. essential oil as green preservative against fungal and aflatoxin B1 contamination of stored spices based on in vitro and in situ efficacy and favorable safety profile on mice
2022
Tiwari, Shikha | Upadhyay, Neha | Singh, Bijendra Kumar | Singh, Vipin Kumar | Dubey, N. K.
Present study deals with the efficacy of nanoencapsulated Homalomena aromatica essential oil (HAEO) as a potent green preservative against toxigenic Aspergillus flavus strain (AF-LHP-NS 7), storage fungi, AFB₁, and free radical-mediated deterioration of stored spices. GC–MS analysis revealed linalool (68.51%) as the major component of HAEO. HAEO was encapsulated into chitosan nanomatrix (CS-HAEO-Ne) and characterized through SEM, FTIR, and XRD. CS-HAEO-Ne completely inhibited A. flavus growth and AFB₁ biosynthesis at 1.25 μL/mL and 1.0 μL/mL, respectively in comparison to unencapsulated HAEO (1.75 μL/mL and 1.25 μL/mL, respectively). CS-HAEO-Ne caused significant reduction in ergosterol content in treated A. flavus and provoked leakage of cellular ions (Ca⁺², Mg⁺², and K⁺) as well as 260 nm and 280 nm absorbing materials. Depletion of methylglyoxal level in treated A. flavus cells illustrated the novel antiaflatoxigenic efficacy of CS-HAEO-Ne. CS-HAEO-Ne exhibited superior antioxidant efficacy (IC₅₀ ₍DPPH₎ = 4.5 μL/mL) over unencapsulated HAEO (IC₅₀ ₍DPPH₎ = 15.9 μL/mL) and phenolic content. CS-HAEO-Ne depicted excellent in situ efficacy by inhibiting fungal infestation, AFB₁ contamination, lipid peroxidation, and mineral loss with acceptable sensorial profile. Moreover, broad safety paradigm (LD₅₀ value = 7150.11 mg/kg) of CS-HAEO-Ne also suggests its application as novel green preservative to enhance shelf life of stored spices.
Show more [+] Less [-]Nanoencapsulation of thyme essential oil: a new avenue to enhance its protective role against oxidative stress and cytotoxicity of zinc oxide nanoparticles in rats
2021
Hassan, Marwa E. | Hassan, Rasha R. | Diab, Kawthar A. | El-Nekeety, Aziza A. | Hassan, Nabila S. | Abdel-Wahhab, Mosaad A.
Although the green synthesis of nanometals is eco-friendly, the toxicity or safety of these biosynthesized nanoparticles in living organisms is not fully studied. This study aimed to evaluate the potential protective role of encapsulated thyme oil (ETO) against zinc oxide nanoparticles (ZnO-NPs). ETO was prepared using a mixture of whey protein isolate, maltodextrin, and gum Arabic, and ZnO-NPs were synthesized using parsley extract. Six groups of male Sprague-Dawley rats were treated orally for 21 days which included the control group, ZnO-NP-treated group (25 mg/kg body weight (b.w.)), ETO-treated groups at low or high dose (50, 100 mg/kg b.w.), and the groups that received ZnO-NPs plus ETO at the two tested doses. Blood and tissue samples were collected for different assays. The results showed that carvacrol and thymol were the major components in ETO among 13 compounds isolated by GC-MS. ZnO-NPs were nearly spherical and ETOs were round in shape with an average size of 38 and 311.8 nm, respectively. Administration of ZnO-NPs induced oxidative stress, DNA damage, biochemical, ctyogentical, and histological changes in rats. ETO at the tested doses alleviated these disturbances and showed protective effects against the hazards of ZnO-NPs. It could be concluded that encapsulation of thyme oil using whey protein isolate, maltodextrin, and gum Arabic improved the antioxidant properties of ETO, probably possess synergistic effects, and can be used as a promising tool in pharmaceutical and food applications.
Show more [+] Less [-]A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector
2022
Pai, Sanidhya | Hebbar, Akshatha | Selvaraj, Subbalaxmi
Bioactive compounds refer to secondary metabolites extracted from plants, fungi, microbes, or animals. Besides having pharmacological or toxicological effects on organisms leading to utilization in food and pharmaceutical industries, the discovery of novel properties of such compounds has led to the diversification of their applications, ranging from cosmetics and functionalized biomaterials to bioremediation and alternate fuels. Conventional time-consuming and solvent-intensive methods of extraction are increasingly being replaced by green solvents such as ionic liquids, supercritical fluids, and deep eutectic solvents, as well as non-conventional methods of extraction assisted by microwaves, pulse electric fields, enzymes, ultrasound, or pressure. These methods, along with advances in characterization and optimization strategies, have boosted the commercial viability of extraction especially from agrowastes and organic residues, promoting a sustainable circular economy. Further development of microfluidics, optimization models, nanoencapsulation, and metabolic engineering are expected to overcome certain limitations that restrict the growth of this field, in the context of improving screening, extraction, and economy of processes, as well as retaining biodiversity and enhancing the stability and functionality of such compounds. This review is a compilation of the various extraction and characterization methods employed for bioactive compounds and covers major applications in food, pharmacy, chemicals, energy, and bioremediation. Major limitations and scope of improvement are also discussed.
Show more [+] Less [-]Essential oils and their bioactive compounds as eco-friendly novel green pesticides for management of storage insect pests: prospects and retrospects
2021
Chaudhari, Anand Kumar | Singh, Vipin Kumar | Kedia, Akash | Das, Somenath | Dubey, N. K.
The control of storage insect pests is largely based on synthetic pesticides. However, due to fast growing resistance in the targeted insects, negative impact on humans and non-target organisms as well as the environment, there is an urgent need to search some safer alternatives of these xenobiotics. Many essential oils (EOs) and their bioactive compounds have received particular attention for application as botanical pesticides, since they exhibited high insecticidal efficacy, diverse mode of action, and favourable safety profiles on mammalian system as well as to the non-target organisms. Data collected from scientific articles show that these EOs and their bioactive compounds exhibited insecticidal activity via fumigant, contact, repellent, antifeedant, ovicidal, oviposition deterrent and larvicidal activity, and by inhibiting/altering important neurotransmitters such as acetylcholine esterase (AChE) and octopamine or neurotransmitter inhibitor γ-amino butyric acid (GABA), as well as by altering the enzymatic [superoxide dismutase (SOD), catalase (CAT), peroxidases (POx), glutathione-S-transferase (GST) and glutathione reductase (GR)] and non-enzymatic [glutathione (GSH)] antioxidant defence systems. However, in spite of promising pesticidal efficacy against storage pests, the practical application of EOs and their bioactive compounds in real food systems remain rather limited because of their high volatility, poor water solubility and susceptibility towards degradation. Nanoencapsulation/nanoemulsion of EOs is currently considered as a promising tool that improved water solubility, enhanced bio-efficacy, stability and controlled release, thereby expanding their applicability.
Show more [+] Less [-]Antioxidant properties of dietary supplements of free and nanoencapsulated silymarin and their ameliorative effects on silver nanoparticles induced oxidative stress in Nile tilapia (Oreochromis niloticus)
2021
Veisi, Shakila | Johari, Seyed Ali | Tyler, Charles R. | Mansouri, Borhan | Esmaeilbeigi, Milad
Silver nanoparticles (AgNPs) are increasingly used in a wide range of products and as a consequence, the environmental concentration will inevitably increase in the near future. Many aquatic organisms have been shown to be sensitive to the toxic effects of silver, including oxidative stress mechanisms. In this study, we assessed the ability of silymarin (Silybum marianum) to counter the oxidative effects of AgNPs in Nile tilapia (Oreochromis niloticus). Fish were fed on the diets supplemented with 50 or 200 mg kg⁻¹ of free or nanoencapsulated silymarin for 50 days. Subsequently, they were exposed via the water to three concentrations (0.05, 0.1, and 0.5 mg L⁻¹) of AgNPs for 24 h, and the effects of this exposure assessed on blood plasma and liver oxidative status. Growth performance and most body indices measured were not affected by any of the experimental diets. There were no effects of free silymarin (FS) or nanoencapsulated silymarin (NS) on levels of plasma aspartate aminotransferase (AST), alanine transaminase (ALT), or on the total protein (TP). In contrast, malondialdehyde (MDA) content, glutathione peroxidase (GPx) activity, and plasma glucose (GLU) were all affected by the high dietary FS and NS treatments compared with controls. Prior to the AgNPs exposure, the levels of SOD and GPx activity were higher and MDA levels lower in the silymarin treatment groups compared to controls. Exposure to AgNPs resulted in a reduction in the levels of GPx and SOD activity and an increase in the level of MDA that was dependent on the exposure concentrations of AgNPs. Based on GPx, MDA, and GLU indices, both forms of silymarin decreased the toxicity of AgNPs, but NS supplementation was the most effective. Thus, we show dietary silymarin supplementation can reduce AgNP toxicity and nanoencapsulation increases its efficacy as an antioxidant.
Show more [+] Less [-]Assessment of preservative potential of Bunium persicum (Boiss) essential oil against fungal and aflatoxin contamination of stored masticatories and improvement in efficacy through encapsulation into chitosan nanomatrix
2020
Singh, Akanksha | Deepika, | Chaudhari, Anand Kumar | Das, Somenath | Singh, Vipin Kumar | Dwivedy, Abhishek Kumar | Shivalingam, Ramani Kandasamy | Dubey, N. K.
The study reports the preservative efficacy of Bunium persicum (Boiss) essential oil (BPEO) against fungal and aflatoxin B₁ (AFB₁) contamination of stored masticatories and boosting of its efficacy through encapsulation into chitosan. BPEO was chemically characterized through GC-MS analysis, which revealed γ-terpinene as the major compound. The BPEO at 1.2 μL/mL concentration completely inhibited the growth of toxigenic strain of Aspergillus flavus (AF-LHP-PE-4) along with 15 common food borne moulds and AFB₁ secretion. The BPEO exerts its antifungal action on plasma membrane, as confirmed through ergosterol inhibition, alteration of membrane fluidity and enhancement of cellular ions and 260 and 280 nm absorbing material leakage. The antiaflatoxigenic mechanism of action of BPEO was confirmed through methylglyoxal reduction. Further, BPEO showed strong antioxidant activity (IC₅₀ = 7.36 μL/mL) as measured by DPPH· assay. During in situ investigation, BPEO completely inhibited AFB₁ production in model food (Phyllanthus emblica) system without altering the sensory properties and also exhibited high LD₅₀ value (14,584.54 μL/kg) on mice. In addition, BPEO was encapsulated into chitosan, characterized and tested for their potential to inhibit growth and AFB₁ production. The mean particle size, PDI and zeta potential of formed BPEO-loaded chitosan nanoparticle (CS-Np-BPEO) were performed to confirm successful encapsulation. The result revealed nanoencapsulated BPEO showed enhanced activity and completely inhibited the growth and AFB₁ production by AF-LHP-PE-4 at 0.8 μL/mL. Based on findings, it could be concluded that the BPEO and its encapsulated formulation can be recommended as a potential plant-based preservative against fungal and aflatoxin contamination of stored masticatories.
Show more [+] Less [-]