Refine search
Results 1-10 of 51
Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part II: Transport experiments and modeling Full text
2014
Vitorge, Elsa | Szenknect, Stéphanie | Martins, Jean M.-F. | Barthès, Véronique | Gaudet, Jean-Paul
Three types of labeled silica nanoparticles were used in transport experiments in saturated sand. The goal of this study was to evaluate both the efficiency of labeling techniques (fluorescence (FITC), metal (Ag(0) core) and radioactivity (110mAg(0) core)) in realistic transport conditions and the reactive transport of silica nanocolloids of variable size and concentration in porous media. Experimental results obtained under contrasted experimental conditions revealed that deposition in sand is controlled by nanoparticles size and ionic strength of the solution. A mathematical model is proposed to quantitatively describe colloid transport. Fluorescent labeling is widely used to study fate of colloids in soils but was the less sensitive one. Ag(0) labeling with ICP-MS detection was found to be very sensitive to measure deposition profiles. Radiolabeled (110mAg(0)) nanoparticles permitted in situ detection. Results obtained with radiolabeled nanoparticles are wholly original and might be used for improving the modeling of deposition and release dynamics.
Show more [+] Less [-]Effect of model dissolved organic matter coating on sorption of phenanthrene by TiO2 nanoparticles Full text
2014
Wang, Xilong | Ma, Enxing | Shen, Xiaofang | Guo, Xiaoying | Zhang, Meng | Zhang, Haiyun | Liu, Ye | Cai, Fei | Tao, Shu | Xing, Baoshan
Dissolved organic matter (DOM) may alter the sorption of hydrophobic organic contaminants (HOC) to metal oxide nanoparticles (NPs), but the role of DOM and NP types is poorly understood. Here, phenanthrene sorption was quantified on four types of nano-TiO2 (three rutile, one anatase), and a bulk, raw TiO2 powder. Prior to the sorption experiments, these nanoparticles were coated using four different organic materials: Lignin (LIG), tannic acid (TAN), Congo red (CON), and capsorubin (CAP). Lignin, tannic acid, congo red and capsorubin coating substantially enhanced phenanthrene sorption to various TiO2 particles. After coating with a specific DOM, Kd values by the DOM-coated TiO2 particles on percent organic carbon content and surface area (SA) basis (Koc/SA) generally followed the order: TiO2 NPs with hydrophobic surfaces > bulk TiO2 particles > other TiO2 NPs. Different Koc/SA values of various DOM-TiO2 complexes resulted from distinct conformation of the coated DOM and aggregation.
Show more [+] Less [-]Silver, zinc oxide and titanium dioxide nanoparticle ecotoxicity to bioluminescent Pseudomonas putida in laboratory medium and artificial wastewater Full text
2014
Mallevre, Florian | Fernandes, Teresa F. | Aspray, Thomas J.
Bacteria based ecotoxicology assessment of manufactured nanoparticles is largely restricted to Escherichia coli bioreporters in laboratory media. Here, toxicity effects of model OECD nanoparticles (Ag NM-300K, ZnO NM-110 and TiO2 NM-104) were assessed using the switch-off luminescent Pseudomonas putida BS566::luxCDABE bioreporter in Luria Bertani (LB) medium and artificial wastewater (AW). IC50 values ∼4 mg L−1, 100 mg L−1 and >200 mg L−1 at 1 h were observed in LB for Ag NM-300K, ZnO NM-110 and TiO2 NM-104, respectively. Similar results were obtained in AW for Ag NM-300K (IC50 ∼5 mg L−1) and TiO2 NM-104 (IC50 >200 mg L−1) whereas ZnO NM-110 was significantly higher (IC50 >200 mg L−1). Lower ZnO NM-110 toxicity in AW compared to LB was associated with differences in agglomeration status and dissolution rate. This work demonstrates the importance of nanoecotoxicological studies in environmentally relevant matrices.
Show more [+] Less [-]Dissolution of metal and metal oxide nanoparticles in aqueous media Full text
2014
Odzak, Niksa | Kistler, David | Behra, Renata | Sigg, Laura
The dissolution of Ag (citrate, gelatin, polyvinylpyrrolidone and chitosan coated), ZnO, CuO and carbon coated Cu nanoparticles (with two nominal sizes each) has been studied in artificial aqueous media, similar in chemistry to environmental waters, for up to 19 days. The dissolved fraction was determined using DGT (Diffusion Gradients in Thin films), dialysis membrane (DM) and ultrafiltration (UF). Relatively small fractions of Ag nanoparticles dissolved, whereas ZnO dissolved nearly completely within few hours. Cu and CuO dissolved as a function of pH. Using DGT, less dissolved Ag was measured compared to UF and DM, likely due to differences in diffusion of organic complexes. Similar dissolved metal concentrations of ZnO, Cu and CuO nanoparticles were determined using DGT and UF, but lower using DM. The results indicate that there is a need to apply complementary techniques to precisely determine dissolution of nanoparticles in aqueous media.
Show more [+] Less [-]A systematic evaluation of agglomeration of Ag and TiO2 nanoparticles under freshwater relevant conditions Full text
2014
Topuz, Emel | Sigg, Laura | Talinli, Ilhan
This study aims to investigate effects of freshwater components in order to predict agglomeration behavior of silver nanoparticles coated with citrate (AgNP-Cit), polyvinylpyrrolidone (AgNP-PVP), and of TiO2 nanoparticles. Agglomeration studies were conducted in various media based on combinations of ions, natural organic matter (humic, fulvic acid) and surfactants (sodium dodecyl sulfate, alkyl ethoxylate), at a constant ionic strength of 10 mM over time for up to 1 week. Agglomeration level of AgNP-Cit and TiO2 was mostly dependent on the concentration of Ca2+ in media, and their size strongly increased to micrometer scale over 1 week. However, AgNP-Cit and TiO2 were stabilized to particle size around 500 nm in the presence of NOM, surfactants and carbonate over 1 week. AgNP-PVP maintained their original size in all media except in the presence of Mg2+ ions which led to significant agglomeration. Behavior of these engineered nanoparticles was similar in a natural freshwater medium.
Show more [+] Less [-]Impacts of metal and metal oxide nanoparticles on marine organisms Full text
2014
Baker, Tony J. | Tyler, Charles R. | Galloway, Tamara S.
Increasing use of metal and metal oxide nanoparticles [Me(O)NPs] in products means many will inevitably find their way into marine systems. Their likely fate here is sedimentation following hetero-aggregation with natural organic matter and/or free anions, putting benthic, sediment-dwelling and filter feeding organisms most at risk. In marine systems, Me(O)NPs can absorb to micro-organisms with potential for trophic transfer following consumption. Filter feeders, especially bivalves, accumulate Me(O)NPs through trapping them in mucus prior to ingestion. Benthic in-fauna may directly ingest sedimented Me(O)NPs. In fish, uptake is principally via the gut following drinking, whilst Me(O)NPs caught in gill mucus may affect respiratory processes and ion transport. Currently, environmentally-realistic Me(O)NP concentrations are unlikely to cause significant adverse acute health problems, however sub-lethal effects e.g. oxidative stresses have been noted in many organisms, often deriving from dissolution of Ag, Cu or Zn ions, and this could result in chronic health impacts.
Show more [+] Less [-]Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba Full text
2014
Perreault, François | Popović, Radovan | Dewez, David
In this report, we investigated how the presence of a polymer shell (poly(styrene-co-butyl acrylate) alters the toxicity of CuO NPs in Lemna gibba. Based on total Cu concentration, core–shell CuO NPs were 10 times more toxic than CuO NPs, inducing a 50% decrease of growth rate at 0.4 g l−1 after 48-h of exposure while a concentration of 4.5 g l−1 was required for CuO NPs for a similar effect. Toxicity of CuO NPs was mainly due to NPs solubilization in the media. Based on the accumulated copper content in the plants, core–shell CuO NPs induced 4 times more reactive oxygen species compared to CuO NPs and copper sulfate, indicating that the presence of the polymer shell changed the toxic effect induced in L. gibba. This effect could not be attributed to the polymer alone and reveals that surface modification may change the nature of NPs toxicity.
Show more [+] Less [-]Modification of metal bioaccumulation and toxicity in Daphnia magna by titanium dioxide nanoparticles Full text
2014
Tan, Cheng | Wang, Wen-Xiong
Titanium dioxide (TiO2) nanoparticles are widely used in water treatments, yet their influences on other contaminants in the water are not well studied. In this study, the aqueous uptake, assimilation efficiency, and toxicity of two ionic metals (cadmium-Cd, and zinc-Zn) in a freshwater zooplankton, Daphnia magna, were investigated following 2 days pre-exposure to nano-TiO2. Pre-exposure to 1 mg/L nano-TiO2 resulted in a significant increase in Cd and Zn uptake from the dissolved phase. After the nano-TiO2 in the guts were cleared, the uptake rates immediately recovered to the normal levels. Concurrent measurements of reactive oxygen species (ROS) and metallothioneins (MTs) suggested that the increased metal uptake was mainly due to the increased number of binding sites provided by nano-TiO2 presented in the guts. Consistently, pre-exposure to nano-TiO2 increased the toxicity of aqueous Cd and Zn due to enhanced uptake. Our study provides the evidence that nano-TiO2 in the guts of animals could increase the uptake and toxicity of other contaminants.
Show more [+] Less [-]Titanium dioxide nanoparticles as carrier facilitate bioaccumulation of phenanthrene in marine bivalve, ark shell (Scapharca subcrenata) Full text
2014
Tian, Shengyan | Zhang, Yaodan | Song, Chunzheng | Zhu, Xiaoshan | Xing, Baoshan
To evaluate the impact of titanium dioxide nanoparticles (nTiO2) on the uptake of hydrophobic organic chemicals by marine bivalves, we conducted a comparative bioaccumulation study by exposing clam, Scapharca subcrenata, to phenanthrene (Phe) in the presence and absence of nTiO2. The large surface area of nTiO2 resulted in adsorption of co-existing Phe in aqueous solution to form nTiO2-Phe complexes. Accumulation of nTiO2 was not observed in clams at exposed concentration (500 μg/L) in this study. However, enhanced uptake of Phe by clams was observed in the presence of nTiO2, with ku and BAFs values being 2 and 1.7 times higher than that of Phe alone, respectively. The enhanced uptake can be explained by ingestion of nTiO2-Phe complexes into the gut and subsequent desorption of Phe there. Therefore, nTiO2 as a carrier facilitated the uptake of Phe by marine bivalves.
Show more [+] Less [-]Sorption kinetics and equilibrium of the herbicide diuron to carbon nanotubes or soot in absence and presence of algae Full text
2014
Schwab, Fabienne | Camenzuli, Louise | Knauer, Katja | Nowack, Bernd | Magrez, Arnaud | Sigg, Laura | Bucheli, Thomas D.
Carbon nanotubes (CNT) are strong sorbents for organic micropollutants, but changing environmental conditions may alter the distribution and bioavailability of the sorbed substances. Therefore, we investigated the effect of green algae (Chlorella vulgaris) on sorption of a model pollutant (diuron, synonyms: 3-(3,4-Dichlorophenyl)-1,1-dimethylurea, DCMU) to CNT (multi-walled purified, industrial grade, pristine, and oxidized; reference material: Diesel soot). In absence of algae, diuron sorption to CNT was fast, strong, and nonlinear (Freundlich coefficients: 105.79–106.24 μg/kgCNT·(μg/L)−n and 0.62–0.70 for KF and n, respectively). Adding algae to equilibrated diuron-CNT mixtures led to 15–20% (median) diuron re-dissolution. The relatively high amorphous carbon content slowed down ad-/desorption to/from the high energy sorption sites for both industrial grade CNT and soot. The results suggest that diuron binds readily, but – particularly in presence of algae – partially reversibly to CNT, which is of relevance for environmental exposure and risk assessment.
Show more [+] Less [-]