Refine search
Results 1-10 of 120
Role of snow in the fate of gaseous and particulate exhaust pollutants from gasoline-powered vehicles Full text
2017
Nazarenko, Yevgen | Fournier, Sébastien | Kurien, Uday | Rangel-Alvarado, Rodrigo Benjamin | Nepotchatykh, Oleg | Seers, Patrice | Ariya, Parisa A.
Little is known about pollution in urban snow and how aerosol and gaseous air pollutants interact with the urban snowpack. Here we investigate interactions of exhaust pollution with snow at low ambient temperature using fresh snow in a temperature-controlled chamber. A gasoline-powered engine from a modern light duty vehicle generated the exhaust and was operated in homogeneous and stratified engine regimes. We determined that, within a timescale of 30 min, snow takes up from the exhaust a large mass of organic pollutants and aerosol particles, which were observed by electron microscopy, mass spectrometry and aerosol sizers. Specifically, the concentration of total organic carbon in the exposed snow increased from 0.948 ± 0.009 to 1.828 ± 0.001 mg/L (homogeneous engine regime) and from 0.275 ± 0.005 to 0.514 ± 0.008 mg/L (stratified engine regime). The concentrations of benzene, toluene and 13 out of 16 measured polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, benz[a]anthracene, chrysene and benzo[a]pyrene in snow increased upon exposure from near the detection limit to 0.529 ± 0.058, 1.840 ± 0.200, 0.176 ± 0.020, 0.020 ± 0.005, 0.025 ± 0.005 and 0.028 ± 0.005 ng/kg, respectively, for the homogeneous regime. After contact with snow, 50–400 nm particles were present with higher relative abundance compared to the smaller nanoparticles (<50 nm), for the homogeneous regime. The lowering of temperature from 25 ± 1 °C to (−8) – (−10) ± 1 °C decreased the median mode diameter of the exhaust aerosol particles from 69 nm to 57 nm (p < 0.1) and addition of snow to 51 nm (p < 0.1) for the stratified regime, but increased it from 20 nm to 27 nm (p < 0.1) for the homogeneous regime. Future studies should focus on cycling of exhaust-derived pollutants between the atmosphere and cryosphere. The role of the effects we discovered should be evaluated as part of assessment of pollutant loads and exposures in regions with a defined winter season.
Show more [+] Less [-]Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles Full text
2017
Formentini, Thiago Augusto | Legros, Samuel | Fernandes, Cristovão Vicente Scapulatempo | Pinheiro, Adilson | Le Bars, Maureen | Levard, Clément | Mallmann, Fábio Joel Kochem | da Veiga, Milton | Doelsch, Emmanuel
Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles Full text
2017
Formentini, Thiago Augusto | Legros, Samuel | Fernandes, Cristovão Vicente Scapulatempo | Pinheiro, Adilson | Le Bars, Maureen | Levard, Clément | Mallmann, Fábio Joel Kochem | da Veiga, Milton | Doelsch, Emmanuel
Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-μm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments.
Show more [+] Less [-]Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles Full text
2017
Formentini, Thiago Augusto | Legros, Samuel | Fernandes, Cristovão Vicente Scapulatempo | Pinheiro, Adilson | Bars, Maureen Le | Levard, Clément | Mallmann, Fábio Joel Kochem | Veiga, Milton, Da | Doelsch, Emmanuel | Centre Européen de Recherche et d'Enseignement des Géosciences de l'Environnement (CEREGE) ; Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) | Recyclage et risque (UPR Recyclage et risque) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)
International audience | Abstract Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and \XAS\ analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-μm diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and \XAS\ observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments.
Show more [+] Less [-]Radical change of Zn speciation in pig slurry amended soil: Key role of nano-sized sulfide particles Full text
2017
Formentini T.A. | Legros S. | Fernandes C.V.S. | Pinheiro A. | Le Bars M. | Levard C. | Mallmann F.J.K. | Da Veiga M. | Doelsch E.
Spreading livestock manure as fertilizer on farmlands is a widespread practice. It represents the major source of heavy metal(loid)s (HM) input in agricultural soils. Since zinc (Zn) is present at high concentrations in manure, it poses special environmental concerns related to phytotoxicity, groundwater contamination, and introduction in the food chain. Therefore, investigations on the fate and behavior of manure-borne Zn, when it enters the soil environment, are necessary to predict the environmental effects. Nevertheless, long-term field studies assessing Zn speciation in the organic waste matrix, as well as within the soil after manure application, are lacking. This study was designed to fill this gap. Using SEM-EDS and XAS analysis, we reported the following new results: (i) ZnS made up 100% of the Zn speciation in the pig slurry (the highest proportion of ZnS ever observed in organic waste); and (ii) ZnS aggregates were about 1-?m diameter (the smallest particle size ever reported in pig slurry). Moreover, the pig slurry containing ZnS was spread on the soil over an 11-year period, totaling 22 applications, and the resulting Zn speciation within the amended soil was analyzed. Surprisingly, ZnS, i.e. the only species responsible for a nearly 2-fold increase in the Zn concentration within the amended soil, was not detected in this soil. Based on SEM-EDS and XAS observations, we put forward the hypothesis that Zn in the pig slurry consisted of nano-sized ZnS crystallites that further aggregated. The low stability of ZnS nanoparticles within oxic and complex environments such as the studied soil was the key explanation for the radical change in pig slurry-borne Zn speciation after long-term amendments. (Résumé d'auteur)
Show more [+] Less [-]Effects of nano-SiO2 on the adsorption of chiral metalaxyl to agricultural soils Full text
2017
Huang, Junxing | Liang, Chuanzhou | Zhang, Xu
The application of nanotechnology in agriculture, pesticide delivery and other related fields increases the occurrence of engineered nanoparticles (ENPs) in soil. Since ENPs have larger surface areas and normally a high adsorption capacity for organic pollutants, they are thought to influence the transport of pesticides in soils and thereafter influence the uptake and transformation of pesticides. The adsorption pattern of racemic-metalaxyl on agricultural soils including kinetics and isotherms changed in the presence of nano-SiO2. The adsorption of racemic-metalaxyl on agricultural soil was not enantioselective, in either the presence or the absence of SiO2. The adsorption of racemic-metalaxyl on SiO2 decreased to some extent in soil-SiO2 mixture, and the absolute decrease was dependent on soil properties. The decreased adsorption of metalaxyl on SiO2 in soil-SiO2 mixture arose from the competitive adsorption of soil-dissolved organic matter and the different dispersion and aggregation behaviors of SiO2 in the presence of soil. Interactions between SiO2 and soil particles also contributed to the decreased adsorption of metalaxyl on SiO2, and the interactions were analyzed by extended Derjaguin–Landau–Verwey–Overbeek theory. The results showed that the presence of nano-particles in soils could decrease the mobility of pesticides in soils and that this effect varied with different soil compositions.
Show more [+] Less [-]Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum Full text
2017
Jin, Yujian | Fan, Xiaoji | Li, Xingxing | Zhang, Zhenyan | Sun, Liwei | Fu, Zhengwei | Lavoie, Michel | Pan, Xiangliang | Qian, Haifeng
Nano-aluminium oxide (nAl2O3) is one of the most widely used nanomaterials. However, nAl2O3 toxicity mechanisms and potential beneficial effects on terrestrial plant physiology remain poorly understood. Such knowledge is essential for the development of robust nAl2O3 risk assessment. In this study, we studied the influence of a 10-d exposure to a total selected concentration of 98 μM nAl2O3 or to the equivalent molar concentration of ionic Al (AlCl3) (196 μM) on the model plant Arabidopsis thaliana on the physiology (e.g., growth and photosynthesis, membrane damage) and the transcriptome using a high throughput state-of-the-art technology, RNA-seq. We found no evidence of nAl2O3 toxicity on photosynthesis, growth and lipid peroxidation. Rather the nAl2O3 treatment stimulated root weight and length by 48% and 39%, respectively as well as photosynthesis opening up the door to the use of nAl2O3 in biotechnology and nano agriculture. Transcriptomic analyses indicate that the beneficial effect of nAl2O3 was related to an increase in the transcription of several genes involved in root growth as well as in root nutrient uptake (e.g., up-regulation of the root hair-specific gene family and root development genes, POLARIS protein). By contrast, the ionic Al treatment decreased shoot and root weight of Arabidopsis thaliana by 57.01% and 45.15%, respectively. This toxic effect was coupled to a range of response at the gene transcription level including increase transcription of antioxidant-related genes and transcription of genes involved in plant defense response to pathogens. This work provides an integrated understanding at the molecular and physiological level of the effects of nAl2O3 and ionic Al in Arabidopsis.
Show more [+] Less [-]Crystalline phase-dependent eco-toxicity of titania nanoparticles to freshwater biofilms Full text
2017
Li, Kun | Qian, Jin | Wang, Peifang | Wang, Chao | Liu, Jingjing | Tian, Xin | Lu, Bianhe | Shen, Mengmeng
The potential toxic impacts of different crystal phases of titania nanoparticles (TNPs) on freshwater biofilms, especially under ultraviolet C irradiation (UVC), are unknown. Here, adverse impacts of three phases (anatase, rutile, and P25, 50 mg L−1 respectively) with UVC irradiation (An-UV, Ru-UV, and P25-UV) on freshwater biofilms were conducted. Characterization experiments revealed that rutile TNPs had a higher water environment stability than anatase and P25 TNPs, possessing a stronger photocatalytic activity under UVC irradiation. Phase-dependent inhibition of cell viability and significant decreases of four- and five-fold in algal biomass at 12 h of exposure were observed compared with unexposed biofilms. Moreover, phase-dependent oxidative stress resulted in remarkably significant reductions (P < 0.01) of the photosynthetic yields of the biofilms, to 40.32% (P25-UV), 48.39% (An-UV), and 46.77% (Ru-UV) of the plateau value obtained in the unexposed biofilms. A shift in community composition that manifested as a strong reduction in diatoms, indicating cyanobacteria and green algae were more tolerant than diatoms when exposed to TNPs. In terms of the toxic mechanisms, rutile TNPs resulted in apoptosis by inducing excessive intracellular reactive oxygen species (ROS) production, whereas P25 and anatase TNPs tended to catalyze enormous acellular ROS lead to cell necrosis under UVC irradiation.
Show more [+] Less [-]Co-transport of chlordecone and sulfadiazine in the presence of functionalized multi-walled carbon nanotubes in soils Full text
2017
Zhang, Miaoyue | Engelhardt, Irina | Šimůnek, Jirka | Bradford, Scott A. | Kasel, Daniela | Berns, Anne E. | Vereecken, H. (Harry) | Klumpp, Erwin
Batch and saturated soil column experiments were conducted to investigate sorption and mobility of two ¹⁴C-labeled contaminants, the hydrophobic chlordecone (CLD) and the sulfadiazine (SDZ), in the absence or presence of functionalized multi-walled carbon nanotubes (MWCNTs). The transport behaviors of CLD, SDZ, and MWCNTs were studied at environmentally relevant concentrations (0.1–10 mg L⁻¹) and they were applied in the column studies at different times. The breakthrough curves and retention profiles were simulated using a numerical model that accounted for the advective-dispersive transport of all compounds, attachment/detachment of MWCNTs, equilibrium and kinetic sorption of contaminants, and co-transport of contaminants with MWCNTs. The experimental results indicated that the presence of mobile MWCNTs facilitated remobilization of previously deposited CLD and its co-transport into deeper soil layers, while retained MWCNTs enhanced SDZ deposition in the topsoil layers due to the increased adsorption capacity of the soil. The modeling results then demonstrated that the mobility of engineered nanoparticles (ENPs) in the environment and the high affinity and entrapment of contaminants to ENPs were the main reasons for ENP-facilitated contaminant transport. On the other hand, immobile MWCNTs had a less significant impact on the contaminant transport, even though they were still able to enhance the adsorption capacity of the soil.
Show more [+] Less [-]Effects of titanium dioxide (TiO2) nanoparticles on the photodissolution of particulate organic matter: Insights from fluorescence spectroscopy and environmental implications Full text
2017
Hu, Bin | Wang, Peifang | Hou, Jun | Wang, Chao | Qian, Jin | Zhang, Nannan | Yuan, Qiusheng
Widely used titanium dioxide (TiO2) nanoparticles are likely to accumulate ultimately in sediments and potentially pose a risk to water ecosystems. This study evaluated the effect of TiO2 nanoparticles on the photodissolution of particulate organic matter (POM) through fluorescence spectroscopy. Excitation-emission matrices and parallel factor analyses revealed that the fluorescent characteristics of produced dissolved organic matter (DOM) during photodissolution of suspended sediment and synthetic particulate organic matter (SPOM) were primarily humic-like. SPOM particles appeared to simulate well the photodissolution of suspended sediment. Quasi-complete increases in fluorescence intensity and chromophoric DOM (CDOM) abundance were reached after 90, 60, and 50 min irradiation for TiO2 concentrations of 0, 2, and 5 mg L−1, respectively. The faster increment of fluorescence intensity and CDOM abundance indicated the photocatalytic dissolution of SPOM, as opposite charges between TiO2 and SPOM at pH = 4 favored the adsorption of TiO2 onto SPOM. For sediments, the CDOM abundance and fluorescence intensity decreased with increasing TiO2 concentration, resulting from the photocatalytic degradation of photoproduced DOM from sediments. These results demonstrated that pH plays an important role in the photocatalytic dissolution of POM by TiO2. Therefore, appropriate pH controls should be implemented when TiO2 are used to treat sediments contaminated with organic pollutants. Finally, with increasing use of TiO2, its accumulation in sediments may affect the fate of carbon, nutrients, and heavy metals in shallow-water ecosystems.
Show more [+] Less [-]Effects of humic acid on the interactions between zinc oxide nanoparticles and bacterial biofilms Full text
2017
Ouyang, Kai | Yu, Xiao-Ying | Zhu, Yunlin | Gao, Chunhui | Huang, Qiaoyun | Cai, Peng
The effects of humic acid (HA) on interactions between ZnO nanoparticles (ZnO NPs) and Pseudomonas putida KT2440 biofilms at different maturity stages were investigated. Three stages of biofilm development were identified according to bacterial adenosine triphosphate (ATP) activity associated with biofilm development process. In the initial biofilm stage 1, the ATP content of bacteria was reduced by more than 90% when biofilms were exposed to ZnO NPs. However, in the mature biofilm stages 2 and 3, the ATP content was only slightly decreased. Biofilms at stage 3 exhibited less susceptibility to ZnO NPs than biofilms at stage 2. These results suggest that more mature biofilms have a significantly higher tolerance to ZnO NPs compared to young biofilms. In addition, biofilms with intact extracellular polymeric substances (EPS) showed higher tolerance to ZnO NPs than those without EPS, indicating that EPS play a key role in alleviating the toxic effects of ZnO NPs. In both pure ZnO NPs and ZnO-HA mixtures, dissolved Zn²⁺ originating from the NPs significantly contributed to the overall toxicity. The presence of HA dramatically decreased the toxicity of ZnO NPs due to the binding of Zn²⁺ on HA. The combined results from this work suggest that the biofilm maturity stages and environmental constituents (such as humic acid) are important factors to consider when evaluating potential risks of NPs to ecological systems.
Show more [+] Less [-]Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation Full text
2017
Sendra, M. | Moreno-Garrido, I. | Yeste, M.P. | Gatica, J.M. | Blasco, J.
Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation Full text
2017
Sendra, M. | Moreno-Garrido, I. | Yeste, M.P. | Gatica, J.M. | Blasco, J.
Use of titanium dioxide nanoparticles (TiO2 NPs) has become a part of our daily life and the high environmental concentrations predicted to accumulate in aquatic ecosystems are cause for concern. Although TiO2 has only limited reactivity, at the nanoscale level its physico-chemical properties and toxicity are different compared with bulk material. Phytoplankton is a key trophic level in fresh and marine ecosystems, and the toxicity provoked by these nanoparticles can affect the structure and functioning of ecosystems. Two microalgae species, one freshwater (Chlamydomonas reinhardtii) and the other marine (Phaeodactylum tricornutum), have been selected for testing the toxicity of TiO2 in NP and conventional bulk form and, given its photo-catalytic properties, the effect of UV-A was also checked. Growth inhibition, quantum yield reduction, increase of intracellular ROS production, membrane cell damage and production of exo-polymeric substances (EPS) were selected as variables to measure.TiO2 NPs and bulk TiO2 show a relationship between the size of agglomerates and time in freshwater and saltwater, but not in ultrapure water. Under two treatments, UV-A (6 h per day) and no UV-A exposure, NPs triggered stronger cytotoxic responses than bulk material. TiO2 NPs were also associated with greater production of reactive oxygen species and damage to membrane. However, microalgae exposed to TiO2 NPs and bulk TiO2 under UV-A were found to be more sensitive than in the visible light condition. The marine species (P. tricornutum) was more sensitive than the freshwater species, and higher Ti internalization was measured. Exopolymeric substances (EPS) were released from microalgae in the culture media, in the presence of TiO2 in both forms. This may be a possible defense mechanism by these cells, which would enhance processes of homoagglomeration and settling, and thus reduce bioavailability.
Show more [+] Less [-]Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation Full text
2017
Sendra, Marta | Moreno-Garrido, Ignacio | Yeste, María Pilar | Gatica, José Manuel | Blasco, Julián | Junta de Andalucía | Ministerio de Economía y Competitividad (España) | European Commission
Use of titanium dioxide nanoparticles (TiO2 NPs) has become a part of our daily life and the high environmental concentrations predicted to accumulate in aquatic ecosystems are cause for concern. Although TiO2 has only limited reactivity, at the nanoscale level its physico-chemical properties and toxicity are different compared with bulk material. Phytoplankton is a key trophic level in fresh and marine ecosystems, and the toxicity provoked by these nanoparticles can affect the structure and functioning of ecosystems. Two microalgae species, one freshwater (Chlamydomonas reinhardtii) and the other marine (Phaeodactylum tricornutum), have been selected for testing the toxicity of TiO2 in NP and conventional bulk form and, given its photo-catalytic properties, the effect of UV-A was also checked. Growth inhibition, quantum yield reduction, increase of intracellular ROS production, membrane cell damage and production of exo-polymeric substances (EPS) were selected as variables to measure. TiO2 NPs and bulk TiO2 show a relationship between the size of agglomerates and time in freshwater and saltwater, but not in ultrapure water. Under two treatments, UV-A (6 h per day) and no UV-A exposure, NPs triggered stronger cytotoxic responses than bulk material. TiO2 NPs were also associated with greater production of reactive oxygen species and damage to membrane. However, microalgae exposed to TiO2 NPs and bulk TiO2 under UV-A were found to be more sensitive than in the visible light condition. The marine species (P. tricornutum) was more sensitive than the freshwater species, and higher Ti internalization was measured. Exopolymeric substances (EPS) were released from microalgae in the culture media, in the presence of TiO2 in both forms. This may be a possible defense mechanism by these cells, which would enhance processes of homoagglomeration and settling, and thus reduce bioavailability. | This research has been funded by the Junta de Andalucía (PE2011-RNM-7812 project and FQM-110 group) and the Spanish National Research Plan (CTM2012-38720-C03-03) and FEDER fundings (MAT2013-40823-R). | Peer reviewed
Show more [+] Less [-]Zinc oxide nanoparticle toxicity in embryonic zebrafish: Mitigation with different natural organic matter Full text
2017
Kteeba, Shimaa M. | El-Adawi, Hala I. | El-Rayis, Osman A. | El-Ghobashy, Ahmed E. | Schuld, Jessica L. | Svoboda, Kurt R. | Guo, Laodong
Exposure experiments were conducted to evaluate the influence of dissolved organic matter (DOM) on the toxicity of ZnO-NPs (10–30 nm) and dissolved Zn at sub-lethal doses (50 and 5 ppm, respectively) to zebrafish (Danio rerio). Humic acid, alginic acid, bovine serum albumin and various natural DOM isolated from rivers as the Milwaukee River-WI (NOMW), Yukon River-AK (NOMA) and Suwannee River-GA DOM (NOMS) were used to represent humic substances (HA), carbohydrates (CHO), proteins (PTN), and natural organic matter (NOM), respectively. Initial experiments were carried out to confirm the toxic effect of ZnO-NPs at 50 ppm, followed by mitigation experiments with different types and concentrations of DOM (0.4–40 mg-C/L). Compared to 0% hatch of 50 ppm ZnO-NPs exposed embryos at 72 h post fertilization (hpf), NOMS, NOMW and HA had the best mitigative effects on hatching (53–65%), followed by NOMA, CHO and PTN (19–35%); demonstrating that the mitigation effects on ZnO-NPs toxicity were related to DOM's quantity and composition. At 96 hpf, 20% of embryos exposed to 50 ppm ZnO-NPs hatched, 100% of embryos reared in embryo medium hatched, and close to 100% of the embryos hatched upon mitigation, except for those mitigated with PTN which had less effect. Dissolved Zn (5 ppm) also exhibited the same toxicity on embryos as ZnO-NPs (50 ppm). However, in the presence of HA, NOM and CHO, the hatching rates at 72 and 96 hpf increased significantly compared to 5% hatch without DOM. The overall mitigation effects produced by DOM followed the order of HA ≥ NOMS > NOM (A&W) > CHO >> PTN, although specific mitigation effects varied with DOM concentration and functionalities. Our results also indicate that the toxicity of ZnO-NPs to embryos was mostly derived from NPs although dissolved Zn released from ZnO-NPs also interacted with embryos, affecting hatching, but to a less extent.
Show more [+] Less [-]