Refine search
Results 1-10 of 171
Environmental and health risks of VOCs in the longest inner–city tunnel in Xi’an, Northwest China: Implication of impact from new energy vehicles
2021
Xu, Hongmei | Feng, Rong | Wang, Zexuan | Zhang, Ningning | Zhang, Renjian | He, Kailai | Wang, Qiyuan | Zhang, Qian | Sun, Jian | Zhang, Bin | Shen, Zhenxing | Ho, Steven Hang Sai | Cao, Junji
Traffic source–dominated volatile organic compound (VOC) samples were collected during four time-intervals in a day (Ⅰ: 7:30–10:30, Ⅱ: 11:00–14:00, Ⅲ: 16:30–19:30, and Ⅳ: 20:00–23:00) in a tunnel in summer, 2019, in Xi’an, China. The total measured VOC (TVOC) in periods Ⅰ and Ⅲ (rush hours, 107.2 ± 8.2 parts per billion by volume [ppbv]) was 1.8 times that in periods Ⅱ and Ⅳ (non-rush hours, 58.6 ± 13.8 ppbv), consistent with the variation in vehicle numbers in the tunnel. The considerably elevated ethane and ethylbenzene levels could have been attributed to emissions from compressed natural gas vehicles and the rapid development of methanol-fueled taxis in Xi’an in 2019. The mixing ratios of benzene, toluene, ethylbenzene, and xylenes (BTEX) contributed 9.4%–12.7% to TVOCs, and the contributions were nearly 40% higher in periods Ⅰ and Ⅲ than in Ⅱ and Ⅳ, indicating that BTEX levels were strongly affected by vehicle emissions. The indicators of motor vehicle emission, namely ethylene, propylene, toluene, m/p-xylenes, o-xylene, and propane, contributed to more than half of the ozone formation potential in this study. The noncarcinogenic risks of VOCs in this study were within the international safety standard, whereas the carcinogenic risks exceeded the standard by 2.3–4.6 times, suggesting that carcinogenic risks were more serious than noncarcinogenic risks. VOCs presented 2.2 and 1.4 times noncarcinogenic and carcinogenic risks during rush hours than during non-rush hours, respectively. Notably, the carcinogenic risk in period Ⅳ was comparable with that in period Ⅲ; however, the vehicle numbers and VOC mixing ratios were the lowest at night, which may have attributed to the increasing number and proportion of methanol M100-fueled vehicles in the tunnel. Therefore, VOCs emitted by new energy vehicles should also be seriously considered while evaluating fossil fuel vehicle emissions.
Show more [+] Less [-]Fossil fuels consumption and carbon dioxide emissions in G7 countries: Empirical evidence from ARDL bounds testing approach
2021
Martins, Tailon | Barreto, Alisson Castro | Souza, Francisca Mendonça | Souza, Adriano Mendonça
This research determines the intertemporal relationships caused by the coal, oil, and natural gas consumption in the carbon dioxide emission by the G7 countries from 1965 to 2018. Auto-regressive and Distributed Lags models and Bound test were used to detect cointegration and understand the dynamic effect. Due to structural breaks occurred in the variables, two dummy variables for the periods of breaks, 1978 and 1990 were incorporated respectively. Positive causality was identified, in the sense that the consumption of fossil fuels provides an increase in carbon dioxide emissions. Short-term elasticities indicate that an increase of 1 percentage point in the consumption of oil, coal, and natural gas will cause, respectively, an increase of 0.4823%, 0.3140%, and 0.1717% in carbon dioxide emissions. In the long run, the increase of 1 percentage point in the consumption of oil, coal, and natural gas will cause, respectively, an increase of 0.4924%, 0.2692%, and 0.1829% in carbon dioxide emissions. The error correction model (ECM = −0.4739) indicates that 47.39% of a shock in the carbon dioxide emissions variable is resolved in one year and after 2 years, carbon dioxide emissions return to long term equilibrium.
Show more [+] Less [-]Health and climate benefits of Electric Vehicle Deployment in the Greater Toronto and Hamilton Area
2020
This study presents the results of an integrated model developed to evaluate the environmental and health impacts of Electric Vehicle (EV) deployment in a large metropolitan area. The model combines a high-resolution chemical transport model with an emission inventory established with detailed transportation and power plant information, as well as a framework to characterize and monetize the health impacts. Our study is set in the Greater Toronto and Hamilton Area (GTHA) in Canada with bounding scenarios for 25% and 100% EV penetration rates. Our results indicate that even with the worst-case assumptions for EV electricity supply (100% natural gas), vehicle electrification can deliver substantial health benefits in the GTHA, equivalent to reductions of about 50 and 260 premature deaths per year for 25% and 100% EV penetration, compared to the base case scenario. If EVs are charged with renewable energy sources only, then electrifying all passenger vehicles can prevent 330 premature deaths per year, which is equivalent to $3.8 Billion (2016$CAD) in social benefits. When the benefit of EV deployment is normalized per vehicle, it is higher than most incentives provided by the government, indicating that EV incentives can generate high social benefits.
Show more [+] Less [-]Occurrence, composition profiles and risk assessment of polycyclic aromatic hydrocarbons in municipal sewage sludge in China
2019
Sun, Shao-Jing | Zhao, Ze-Bin | Li, Bo | Ma, Li-Xin | Fu, Dong-Lei | Sun, Xia-Zhong | Thapa, Samit | Shen, Ji-Min | Qi, Hong | Wu, Yi-Ning
A nationwide survey, including 75 sludge samples and 18 wastewater samples taken from different wastewater treatment plants (WWTPs) from 23 cities, was carried out to investigate the occurrence and composition profiles of polycyclic aromatic hydrocarbons (PAHs) in China. In total, the concentrations of ∑16PAHs in sludge ranged from 565 to 280,000 ng/g (mean: 9340 ng/g) which was at a moderate level in the world. The composition profiles of PAHs were characterized by 3- and 4-ring PAHs in textile dyeing sludge and 4- and 5-ring PAHs in domestic sludge. Significant variations in regional distribution of PAHs were observed. Both the principal components analysis and diagnostic ratios revealed that vehicle exhaust, coal and natural gas combustion were the main sources of PAHs in China. The estimated concentrations of PAHs were 3820 ng/L and 1120 ng/L in influents and effluents of the WWTPs, respectively. The high toxic equivalent quantity (TEQ) values of PAHs are ascribed to the high PAH levels. Risk quotient values (RQs) in sludge indicated that there was low potential risk to soil ecosystem after sludge had been applied one year except for indeno [1,2,3-cd]pyrene (IcdP) detected in Huaibei, Anhui province.
Show more [+] Less [-]A case study of BTEX characteristics and health effects by major point sources of pollution during winter in Iran
2019
Baghani, Abbas Norouzian | Sorooshian, Armin | Heydari, Maryam | Sheikhi, Razieh | Golbaz, Somayeh | Ashournejad, Qadir | Kermani, Majid | Golkhorshidi, Faranak | Barkhordari, Abdullah | Jafari, Ahmad Jonidi | Delikhoon, Mahdieh | Shahsavani, Abbas
This study characterized spatio-temporal variations in the concentration of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds in the vicinity of gas and compressed natural gas (CNG) stations in Tehran, Iran. Health risk assessment (HRA) was computed using Monte Carlo simulations (MCS) for evaluating inhalation lifetime cancer risk (LTCR), the hazard quotient (HQ), and sensitivity analysis (SA) for BTEX exposure in different age groups (birth to <81) and as a function of distance (0–250 m) from the center of the stations. For all monitoring stations, the average values of benzene, toluene, ethylbenzene, and xylene in winter were 466.09 ± 132.25, 873.13 ± 233.51, 493.05 ± 141.22, and 910.57 ± 145.40 μg m⁻³, respectively. The mean wintertime ratios of T/B for the 12 stations ranged from 1.69 to 2.04. Furthermore, there was no significant relationship between the concentration of BTEX with either the specific month or distance from the center of stations (p > 0.05). Factors promoting BTEX formation in the study region were fuel evaporation and gas/CNG station emissions. The LTCRs for the target compounds in the winter for different age groups and distances from the center of stations was limited to 2.11 × 10⁻⁴ to 1.82 × 10⁻³ and 2.30 × 10⁻⁴ to 2.01 × 10⁻³, respectively, which exceeded proposed values by U.S. EPA. Moreover, the HQs for BTEX for three age groups and distances were limited to between 2.89 × 10⁻⁵ and 9.33 × 10⁻², which were lower than the acceptable limit (HQs < 1). The results of this work are applicable to similar areas that are heavily populated with vehicular traffic. This study motivates a closer look at mitigation strategies to limit the health effects of carcinogenic emissions such as benzene and ethylbenzene from gas/CNG stations.
Show more [+] Less [-]Environmental and individual PAH exposures near rural natural gas extraction
2018
Paulik, L Blair | Hobbie, Kevin A. | Rohlman, Diana | Smith, Brian W. | Scott, Richard P. | Kincl, Laurel | Haynes, Erin N. | Anderson, Kim A.
Natural gas extraction (NGE) has expanded rapidly in the United States in recent years. Despite concerns, there is little information about the effects of NGE on air quality or personal exposures of people living or working nearby. Recent research suggests NGE emits polycyclic aromatic hydrocarbons (PAHs) into air. This study used low-density polyethylene passive samplers to measure concentrations of PAHs in air near active (n = 3) and proposed (n = 2) NGE sites. At each site, two concentric rings of air samplers were placed around the active or proposed well pad location. Silicone wristbands were used to assess personal PAH exposures of participants (n = 19) living or working near the sampling sites. All samples were analyzed for 62 PAHs using GC-MS/MS, and point sources were estimated using the fluoranthene/pyrene isomer ratio. ∑PAH was significantly higher in air at active NGE sites (Wilcoxon rank sum test, p < 0.01). PAHs in air were also more petrogenic (petroleum-derived) at active NGE sites. This suggests that PAH mixtures at active NGE sites may have been affected by direct emissions from petroleum sources at these sites. ∑PAH was also significantly higher in wristbands from participants who had active NGE wells on their properties than from participants who did not (Wilcoxon rank sum test, p < 0.005). There was a significant positive correlation between ∑PAH in participants' wristbands and ∑PAH in air measured closest to participants’ homes or workplaces (simple linear regression, p < 0.0001). These findings suggest that living or working near an active NGE well may increase personal PAH exposure. This work also supports the utility of the silicone wristband to assess personal PAH exposure.
Show more [+] Less [-]Measurement of methane emission into environment during natural gas purging process
2018
Farzaneh-Gord, Mahmood | Pahlevan-Zadeh, Mohammad Sadegh | Ebrahimi-Moghadam, Amir | Rastgar, Saied
The main purpose of this study is to develop accurate equation for predicting methane emission into the environment during natural gas (NG) purging process. The process is carried out regularly in NG pressure reducing stations. For this purpose, a numerical investigation has been carried out to simulate NG exit flow from a purging valve during opening time. The simulation has been carried out using Ansys-Fluent code. To make the solution and results more similar to actual scenario, the valve is continuously opened in a transient turbulent flow. Initial condition, is assumed steady flow in the pipeline. Three-dimensional modeling is used to simulate the valve and connected pipe, and all of the effective parameters including, inlet pressure, pipeline diameter, valve diameter and purging process time (including the time which valve needs to get completely opened and also purging time) are investigated. For simplicity and also as the main component of NG is methane, methane is considered as working fluid (a real compressible gas). The numerical results show that discharging gas velocity is reached to a supersonic velocity at outlet section of valve. As the highest expected exit velocity is sonic velocity, the supersonic velocity is a surprised result. Looking at the streamlines show that this is due to a convergent-divergent nozzle occurrence (due to re-circulation zone near junction) in discharging pipe. Also results show that discharged mass flow rate has liner relation with pipeline pressure, second degree relation with valve diameter and has fourth-degree relation with valve to pipeline diameter ratio. To make the results more applicable for NG industry, two correlations have been developed for calculating the amount of released gas in steady state and unsteady state condition. Unsteady state correlation is valid for valve opening time and steady state correlation could be used while the valve is completely opened.
Show more [+] Less [-]Validation of mobile in situ measurements of dairy husbandry emissions by fusion of airborne/surface remote sensing with seasonal context from the Chino Dairy Complex
2018
Leifer, Ira | Melton, Christopher | Tratt, David M. | Buckland, Kerry N. | Chang, Clement S. | Frash, Jason | Hall, Jeffrey L. | Kuze, Akihiko | Leen, Brian | Clarisse, Lieven | Lundquist, Tryg | Van Damme, Martin | Vigil, Sam | Whitburn, Simon | Yurganov, Leonid
Mobile in situ concentration and meteorology data were collected for the Chino Dairy Complex in the Los Angeles Basin by AMOG (AutoMObile trace Gas) Surveyor on 25 June 2015 to characterize husbandry emissions in the near and far field in convoy mode with MISTIR (Mobile Infrared Sensor for Tactical Incident Response), a mobile upwards-looking, column remote sensing spectrometer. MISTIR reference flux validated AMOG plume inversions at different information levels including multiple gases, GoogleEarth imagery, and airborne trace gas remote sensing data. Long-term (9-yr.) Infrared Atmospheric Sounding Interferometer satellite data provided spatial and trace gas temporal context.For the Chino dairies, MISTIR-AMOG ammonia (NH₃) agreement was within 5% (15.7 versus 14.9 Gg yr⁻¹, respectively) using all information. Methane (CH₄) emissions were 30 Gg yr⁻¹ for a 45,200 herd size, indicating that Chino emission factors are greater than previously reported.Single dairy inversions were much less successful. AMOG-MISTIR agreement was 57% due to wind heterogeneity from downwind structures in these near-field measurements and emissions unsteadiness. AMOG CH₄, NH₃, and CO₂ emissions were 91, 209, and 8200 Mg yr⁻¹, implying 2480, 1870, and 1720 head using published emission factors. Plumes fingerprinting identified likely sources including manure storage, cowsheds, and a structure with likely natural gas combustion.NH₃ downwind of Chino showed a seasonal variation of a factor of ten, three times larger than literature suggests. Chino husbandry practices and trends in herd size and production were reviewed and unlikely to add seasonality. Higher emission seasonality was proposed as legacy soil emissions, the results of a century of husbandry, supported by airborne remote sensing data showing widespread emissions from neighborhoods that were dairies 15 years prior, and AMOG and MISTIR observations. Seasonal variations provide insights into the implications of global climate change and must be considered when comparing surveys from different seasons.
Show more [+] Less [-]Street-level emissions of methane and nitrous oxide from the wastewater collection system in Cincinnati, Ohio
2018
Fries, Anastasia E. | Schifman, Laura A. | Shuster, William D. | Townsend-Small, Amy
Recent studies have indicated that urban streets can be hotspots for emissions of methane (CH4) from leaky natural gas lines, particularly in cities with older natural gas distribution systems. The objective of the current study was to determine whether leaking sewer pipes could also be a source of street-level CH4 as well as nitrous oxide (N2O) in Cincinnati, Ohio, a city with a relatively new gas pipeline network. To do this, we measured the carbon (δ13C) and hydrogen (δ2H) stable isotopic composition of CH4 to distinguish between biogenic CH4 from sewer gas and thermogenic CH4 from leaking natural gas pipelines and measured CH4 and N2O flux rates and concentrations at sites from a previous study of street-level CH4 enhancements (77 out of 104 sites) as well as additional sites found through surveying sewer grates and utility manholes (27 out of 104 sites). The average isotopic signatures for δ13C-CH4 and δ2H-CH4 were −48.5‰ ± 6.0‰ and −302‰ ± 142‰. The measured flux rates ranged from 0.0 to 282.5 mg CH4 day−1 and 0.0–14.1 mg N2O day−1 (n = 43). The average CH4 and N2O concentrations measured in our study were 4.0 ± 7.6 ppm and 392 ± 158 ppb, respectively (n = 104). 72% of sites where fluxes were measured were a source of biogenic CH4. Overall, 47% of the sampled sites had biogenic CH4, while only 13% of our sites had solely thermogenic CH4. The other sites were either a source of both biogenic and thermogenic CH4 (13%), and a relatively large portion of sites had an unresolved source (29%). Overall, this survey of emissions across a large urban area indicates that production and emission of biogenic CH4 and N2O is considerable, although CH4 fluxes are lower than those reported for cities with leaky natural gas distribution systems.
Show more [+] Less [-]PAHs and PCBs in an Eastern Mediterranean megacity, Istanbul: Their spatial and temporal distributions, air-soil exchange and toxicological effects
2017
Cetin, Banu | Ozturk, Fatma | Keles, Melek | Yurdakul, Sema
Istanbul, one of the mega cities in the world located between Asia and Europe, has suffered from severe air pollution problems due to rapid population growth, traffic and industry. Atmospheric levels of PAHs and PCBs were investigated in Istanbul at 22 sampling sites during four different sampling periods using PUF disk passive air samplers and spatial and temporal variations of these chemicals were determined. Soil samples were also taken at the air sampling sites. At all sites, the average ambient air Σ15PAH and Σ41PCB concentrations were found as 85.6 ± 68.3 ng m−3 and 246 ± 122 pg m−3, respectively. Phenanthrene and anthracene were the predominant PAHs and low molecular weight congeners dominated the PCBs. The PAH concentrations were higher especially at urban sites close to highways. However, the PCBs showed moderately uniform spatial variations. Except four sites, the PAH concentrations were increased with decreasing temperatures during the sampling period, indicating the contributions of combustion sources for residential heating, while PCB concentrations were mostly increased with the temperature, probably due to enhanced volatilization at higher temperatures from their sources. The results of the Factor Analysis represented the impact of traffic, petroleum, coal/biomass and natural gas combustion and medical waste incineration plants on ambient air concentrations. A similar spatial distribution trend was observed in the soil samples. Fugacity ratio results indicated that the source/sink tendency of soil for PAHs and PCBs depends on their volatility and temperature; soil generally acts as a source for lighter PAHs and PCBs particularly in higher temperatures while atmospheric deposition is a main source for higher molecular weight compounds in local soils. Toxicological effect studies also revealed the severity of air and soil pollution especially in terms of PAHs in Istanbul.
Show more [+] Less [-]