Refine search
Results 1-10 of 173
Selecting the best stabilization/solidification method for the treatment of oil-contaminated soils using simple and applied best-worst multi-criteria decision-making method
2020
Kujlu, Rahele | Moslemzadeh, Mehrdad | Rahimi, Somayeh | Aghayani, Ehsan | Ghanbari, Farshid | Mahdavianpour, Mostafa
Oil-contaminated soils resulted from drilling activities can cause significant damages to the environment, especially for living organisms. Treatment and management of these soils are the necessity for environmental protection. The present study investigates the field study of seven oil-contaminated soils treated by different stabilization/solidification (S/S) methods, and the selection of the best treated site and treatment method. In this study, first, the ratios of consumed binders to the contaminated soils (w/w) and the treatment times for each unit of treated soils were evaluated. The ratios of consumed binders to the contaminated soils were between 6 and 10% and the treatment times for each unit of treated soils were between 4.1 and 18.5 min/m³. Physicochemical characteristics of treated soils were also determined. Although S/S methods didn’t change the water content of treated soils, they increased the porosity of soils. Unexpectedly, the cement-based S/S methods didn’t increase the pH of the treated soils. The highest and the lowest leaching of petroleum hydrocarbons was belonging to S/S using diatomaceous earth (DE) and the combination of Portland cement, sodium silicate and DE (CS-DE), respectively. The best acid neutralization capacity was obtained for soils treated using the combination of Portland cement and sodium silicate (CS). Based on the best-worst multi-criteria decision-making method (BWM-MCDM), the soils treated using CS-DE was select as the best. The BWM-MCDM can be used as an effective tool for the selection of the best alternative in all areas of environmental decontamination.
Show more [+] Less [-]Leaching of two northern France slag heaps: Influence on the surrounding aquatic environment
2020
Gaulier, Camille | Billon, Gabriel | Lesven, Ludovic | Falantin, Cécilia | Superville, Pierre-Jean | Baeyens, Willy | Gao, Yue
After the exploitation of coal mines in the 19th and 20th centuries in northern France, many mining slag heaps (SH) were left without any particular management or monitoring. Currently, the influence of these SHs on the quality of surrounding wetlands is hardly known.The purpose of this work is to determine the water quality in the neighbourhood of two SHs located near the city of Douai and its influence on the distribution of aquatic invertebrates in local wetlands. Our approach involves (1) the spatial and temporal characterization of the water composition (anions, major elements, sulphide, DOC and alkalinity) and of the biological diversity (aquatic invertebrates) and (2), based on this chemical and biological screening, the establishment of relationships between water quality and biodiversity distribution through multivariate data analysis. The results clearly indicate that substantial leaching from the slag heaps occurs, given the very high concentrations of dissolved sulphates (in the range of 2 g L⁻¹). While the pH remains weakly basic, indicating that the leaching water has been neutralized by the highly carbonated regional substratum, high levels of biodegradable organic matter and sulphate contents have been noticed. They sporadically cause significant drops in dissolved oxygen and the occurrence of dissolved sulphides that massively reduce biodiversity, qualitatively and quantitatively. In Summer, oxygen saturation is generally lower due to the higher rate of organic matter degradation, and the risk of anoxic episodes therefore increases. Finally, as wetlands are vulnerable environments, these preliminary results suggest that monitoring and management of these sites must be attempted quickly to avoid the degradation of those valuable habitats.
Show more [+] Less [-]Toxicity of a chromium-enriched superfood, Spirulina platensis, assessed by taxonomic and morpho-functional diversity of marine meiofauna
2020
Essid, Naceur | Gharbi, Rifka | Harrath, Abdel Halim | Mansour, Lamjed | Mahmoudi, Ezzeddine | Beyrem, Hamouda | Ansari, Kapuli Gani Mohamed Thameemul | Boufahja, Fehmi
A laboratory bioassay was conducted to investigate the ecotoxicity of a chromium-enriched superfood, Spirulina platensis, on the meiofauna collected from the Ghar El Melh lagoon, Tunisia. After 1 month of exposure, the abundances of meiobenthic taxa and the taxonomic and morpho-functional diversity of nematodes showed significant differences between the Spirulina and Spirulina + chromium groups. The nematodes were more tolerant of all types of stressors compared to harpacticoids, polychaetes, and oligochaetes, and the lowest taxonomic and morpho-functional diversity of nematodes was observed in the highest sedimentary concentration of S. platensis (50% DW). The mixed treatments may have been richer in micro-habitats and subject to low selective pressure, thereby hosting nematodes with a wide range of adaptations. The responses of the nematode species differed depending on their functional traits. Spirulina enriched with chromium induced two responses for the same feeding group: high toxicity for Daptonema fallax and low toxicity for two Theristus species (T. flevensis and T. modicus). The ecotoxicity of the Spirulina/chromium mixtures were lower than that of Spirulina alone, suggesting mutual neutralization between these two elements. The association between functional traits and taxonomic diversity showed that the effects of the mixtures were not additive and that one of the stressors camouflaged the effect of the other. Our findings should encourage the commercialization of chromium-enriched S. platensis owing to its lower ecotoxicity than Spirulina alone.
Show more [+] Less [-]Increasing importance of nitrate formation for heavy aerosol pollution in two megacities in Sichuan Basin, southwest China
2019
Tian, Mi | Liu, Yuan | Yang, Fumo | Zhang, Leiming | Peng, Chao | Chen, Yang | Shi, Guangming | Wang, Huanbo | Luo, Bin | Jiang, Changtan | Li, Bo | Takeda, Naoki | Koizumi, Kazuhiro
Secondary inorganic aerosols, including sulfate, nitrate, and ammonium contribute to a large extent to the severe haze pollution events in China. Understanding their formation mechanisms is critical for designing effective mitigation strategies to control haze pollution, especially as the role of nitrate seemed to become more important recently, especially in some megacities. In the present study, simultaneous observations were conducted in two megacities (Chengdu and Chongqing) in Sichuan Basin of southwest China, one of the regions suffering from severe aerosol pollution. One typical long-lasting pollution event in Chengdu and Chongqing was captured during wintertime from December 25, 2016 to January 5, 2017. The campaign-average of hourly concentrations of PM2.5, sulfate, and nitrate, measured by an Aerosol Analyzer (ZSF) were 101 ± 73.8 μg/m3, 15.9 ± 11.8 μg/m3, and 24.9 ± 20.6 μg/m3, respectively, in Chengdu, and were 87.7 ± 53.8 μg/m3, 19.7 ± 13.5 μg/m3, and 15.1 ± 10.1 μg/m3, respectively, in Chongqing. Nitrate contributed substantially to PM2.5 pollution when PM2.5 was lower than 150 μg/m3, largely due to the strong secondary transformation of NOX to nitrate during the occurrence of the pollution episode. Heterogeneous hydrolysis of N2O5 dominated nitrate formation during nighttime, while photochemical reactions and high-RH enhanced gas- to aqueous-phase dissolution of NH3 and HNO3 or cloud processes likely played important roles for nitrate formation during daytime. RH-dependent heterogeneous reactions contributed greatly to the formation of sulfate. NOX is confirmed to play an important role as an oxidant in accelerating the secondary transformation of SO2 to sulfate at high RH and low O3 levels under neutralization condition during heavy PM2.5 pollution episode. Results from this study identified the formation mechanism of nitrate, especially during the daytime, and addressed the importance of heterogeneous inorganic reactions in the formation of heavy aerosol pollution events.
Show more [+] Less [-]Trends in surface water chemistry in afforested Welsh catchments recovering from acidification, 1991–2012
2019
Broadmeadow, S.B. | Nisbet, T.R. | Forster, J.
A key criterion of the UK Government's policy on sustainable forest management is safeguarding the quality and quantity of water. Forests and forestry management practices can have profound effects on the freshwater environment. Poor forest planning or management can severely damage water resources at great cost to other water users; in contrast good management that restores and maintains the natural functions of woodland can benefit the whole aquatic ecosystem.Forests and forest management practices can affect surface water acidification. Monitoring of water chemistry in ten forest and two moorland acid-sensitive catchments in upland Wales commenced in 1991. The streams were selected to supplement the United Kingdom Upland Waters Monitoring Network (UWMN) with additional examples of afforested catchments. Analysis of 22 years of water chemistry data revealed trends indicative of recovery from acidification. Excess sulphate exhibited a significant coherent decline, accompanied by increases in pH and “charge-balance based” acid neutralising capacity (CB-ANC). Alkalinity and “alkalinity-based” acid neutralising capacity (AB-ANC) exhibited fewer trends, possibily due to the variable responses of the organic - carbonate species to increasing pH in these low alkalinity streams. Whilst total anthropogenic acidity declined, dissolved organic carbon and Nitrate-Nitrogen (NNO₃) concentrations have risen, and the contribution of NNO₃ to acidification has increased.Between-stream variability was analysed using Principal Component Analysis of the trend slopes. Hierarchical clustering of the changes in stream water chemistry indicated three distinct clusters with no absolute distinction between moorland and forest streams. Redundancy analysis was used to test for significant site-specific variables that explained differences in the trend slopes, with rainfall, crop age, base cation concentration and forest cover being significant explanatory variables.
Show more [+] Less [-]Mechanism of Cu(II) and Cd(II) immobilization by extracellular polymeric substances (Escherichia coli) on variable charge soils
2019
Nkoh, Jackson Nkoh | Xu, Ren-Kou | Yan, Jing | Jiang, Jun | Li, Jiu-yu | Kamran, Muhammad Aqeel
Extracellular polymeric substances (EPS) found in soils can reduce the mobility of heavy metals through the use of both electrostatic and non-electrostatic mechanisms. Their effects vary from one soil type to another. The influence of EPS from Escherichia coli on the adsorption behaviors of Cu(II) and Cd(II) by two bulk variable charge soils, Oxisol and Ultisol, was studied at constant and varied pH, and the results were compared to a constant charge Alfisol. The maximum adsorption capacities of the soils were significantly (P < 0.05) enhanced in the presence of EPS, with Cu(II) adsorption being greater. Interaction of EPS with soils made the soil surface charge more negative by neutralizing positive charges and shifting the zeta potentials in a negative direction: from −18.6 to −26.4 mV for Alfisol, +5.1 to −22.2 mV for Oxisol, and +0.3 to −28.0 mV for Ultisol at pH 5.0. The adsorption data fitted both the Freundlich and Langmuir isotherms well. Preadsorbed Cd(II) was more easily desorbed by KNO₃ than preadsorbed Cu(II) from both the control and EPS treated soils. The adsorption of both metals was governed by electrostatic and non-electrostatic mechanisms, although more Cu(II) was adsorbed through the non-electrostatic mechanism. The information obtained in this study will improve our understanding of the mechanisms involved in reducing heavy metals mobility in variable charge soils and hence, their bioavailability.
Show more [+] Less [-]Influence of macromolecules on aggregation kinetics of diesel soot nanoparticles in aquatic environments
2019
Chen, Chengyu | Wei, Jingyue | Li, Jing | Duan, Zhihui | Huang, Weilin
Soot nanoparticles (SNPs) produced from incomplete combustion have strong impacts on aquatic environments as they eventually reach surface water, where their environmental fate and transport are largely controlled by aggregation. This study investigated the aggregation kinetics of SNPs in the presence of macromolecules including fulvic acid (FA), humic acid (HA), alginate polysaccharide, and bovine serum albumin (BSA, protein) under various environmentally relevant solution conditions. Our results showed that increasing salt concentrations induced SNP aggregation by suppressing electrostatic repulsion and that CaCl2 exhibited stronger effect than NaCl in charge neutralization, which is in agreement with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The aggregation rates of SNPs were variously reduced by macromolecules, and such stabilization effect was the greatest by BSA, followed by HA, alginate, and FA. Steric repulsion resulting from macromolecules adsorbed on SNP surfaces was mainly responsible for enhancing SNP stability. Such steric repulsion appeared to be affected by macromolecular structure, as BSA having a more compact globular structure on SNP surfaces imparted long-range steric repulsive forces and retarded the SNP aggregation rate by 10–100 times. In addition, alginate was shown to enhance SNP aggregation by ∼10 times at high CaCl2 concentrations due to alginate gel formation via calcium bridging. The results may bear strong significance for the fate and transport of SNPs in both natural and controlled environmental systems.
Show more [+] Less [-]Source tagging modeling study of regional contributions to acid rain in summer over Liaoning Province, Northeastern China
2018
Gbaguidi, Alex E. | Wang, Zifa | Wang, Wei | Yang, Ting | Chen, Huan-Sheng
Strong acid rain was recently observed over Northeastern China, particularly in summer in Liaoning Province where alkaline dust largely neutralized acids in the past. This seems to be related to the regional transboundary pollution and poses new challenges in acid rain control scheme in China. In order to delve into the regional transport impact, and quantify its potential contributions to such an “eruption” of acid rain over Liaoning, this paper employs an online source tagging model in coupling with the Nested Air Quality Prediction Modeling System (NAQPMS). Validation of predictions shows the model capability in reproducing key meteorological and chemical features. Acid concentration over Liaoning is more pronounced in August (average of 0.087 mg/m³) with strong pollutant import from regional sources against significant depletion of basic species. Seasonal mean contributions from regional sources are assessed at both lower and upper boundary layers to elucidate the main pathways of the impact of regional sources on acid concentration over Liaoning. At the upper layer (1.2 km), regional sources contribute to acid concentration over Liaoning by 67%, mainly from Shandong (16%), Hebei (13%), Tianjin (11%) and Korean Peninsula (9%). Identified main city-receptors in Liaoning are Dandong, Dalian, Chaohu, Yingkou, Liaoyang, Jinfu, Shengyang, Panjin, Tieling, Benxi, Anshan and Fushun. At lower layer (120 m) where Liaoning local contribution is dominant (58%), regional sources account for 39% in acid concentration. However, inter-municipal acid exchanges are prominent at this layer and many cities in Liaoning are revealed as important sources of local acid production. Seasonal acid contribution average within 1.2 km-120 m attains 55%, suggesting dominance of vertical pollutant transport from regional sources towards lower boundary layer in Liaoning. As direct environmental implication, this study provides policy makers with a perspective of regulating the regional transboundary environmental impact assessment in China with application to acid rain control.
Show more [+] Less [-]Ferric-enhanced chemical remediation of dredged marine sediment contaminated by metals and petroleum hydrocarbons
2018
Yoo, Jongchan | Jeon, Pilyong | Tsang, Daniel C.W. | Kwon, Eilhann E. | Baek, Kitae
Sediments nearby harbors are dredged regularly, and the sediments require the stringent treatment to meet the regulations on reuse and mitigate the environmental burdens from toxic pollutants. In this study, FeCl₃ was chosen as an extraction agent to treat marine sediment co-contaminated with Cu, Zn, and total petroleum hydrocarbons (TPH). In chemical extraction process, the extraction efficiency of Cu and Zn by FeCl₃ was compared with the conventional one using inorganic acids (H₂SO₄ and HCl). Despite the satisfactory level for extraction of Cu (78.8%) and Zn (73.3%) by HCl (0.5 M) through proton-enhanced dissolution, one critical demerit, particularly acidified sediment, led to the unwanted loss of Al, Fe, and Mg by dissolution. Moreover, the vast amount of HCl required the huge amounts of neutralizing agents for the post-treatment of the sediment sample via the washing process. Despite a low concentration, extraction of Cu (70.1%) and Zn (69.4%) was done by using FeCl₃ (0.05 M) through proton-enhanced dissolution, ferric-organic matter complexation, and oxidative dissolution of sulfide minerals. Ferric iron (Fe³⁺) was reduced to ferrous iron (Fe²⁺) with sulfide (S²⁻) oxidation during FeCl₃ extraction. In consecutive chemical oxidations using hydrogen peroxide (H₂O₂) and persulfate (S₂O₈²⁻), the resultant ferrous iron was used to activate the oxidants to effectively degrade TPH. S₂O₈²⁻ using FeCl₃ solution (molar ratio of ferrous to S₂O₈²⁻ is 19.8–198.3) removed 42.6% of TPH, which was higher than that by H₂O₂ (molar ratio of ferrous to H₂O₂ is 1.2–6.1). All experimental findings suggest that ferric is effectively accommodated to an acid washing step for co-contaminated marine sediments, which leads to enhanced extraction, cost-effectiveness, and less environmental burden.
Show more [+] Less [-]Predicting total dissolved solids release from central Appalachian coal mine spoils
2016
Daniels, W. L. | Zipper, C. E. | Orndorff, Z. W. | Skousen, J. | Barton, C. D. | McDonald, L. M. | Beck, M. A.
Appalachian USA surface coal mines face public and regulatory pressure to reduce total dissolved solids (TDS) in discharge waters, primarily due to effects on sensitive macroinvertebrates. Specific conductance (SC) is an accurate surrogate for TDS and relatively low levels of SC (300–500 μS cm−1) have been proposed as regulatory benchmarks for instream water quality. Discharge levels of TDS from regional coal mines are frequently >1000 μS cm−1. The primary objectives of this study were to (a) determine the effect of rock type and weathering status on SC leaching potentials for a wide range of regional mine spoils; (b) to relate leachate SC from laboratory columns to actual measured discharge SC from field sites; and (c) determine effective rapid lab analyses for SC prediction of overburden materials. We correlated laboratory unsaturated column leaching results for 39 overburden materials with a range of static lab parameters such as total-S, saturated paste SC, and neutralization potential. We also compared column data with available field leaching and valley fill discharge SC data. Leachate SC is strongly related to rock type and pre-disturbance weathering. Fine-textured and non-weathered strata generally produced higher SC and pose greater TDS risk. High-S black shales produced the highest leachate SC. Lab columns generated similar range and overall SC decay response to field observations within 5–10 leaching cycles, while actual reduction in SC in the field occurs over years to decades. Initial peak SC can be reliably predicted (R2 > 0.850; p < 0.001) by simple lab saturated paste or 1:2 spoil:water SC procedures, but predictions of longer-term SC levels are less reliable and deserve further study. Overall TDS release risk can be accurately predicted by a combination of rock type + S content, weathering extent, and simple rapid SC lab measurements.
Show more [+] Less [-]