Refine search
Results 1-10 of 226
Response to heavy nitrogen applications in fertilizer experiments in British forests.
1988
Miller H.G. | Miller J.D.
Petroleum biodegradation and oil spill bioremediation.
1995
Atlas R.M.
The effect of nitrogen fertilization on fungistatic phenolic compounds in roots of beech (Fagus sylvatica L.) and Norway spruce (Picea abies L. [Karst.])
2002
Tomova, L. | Braun, S. | Fluckiger, W. (Institute for Applied Plant Biology, Schonenbuch, (Switzerland))
The phenolic compounds showed different responses to fertilization. Fine roots of beech showed a significant decrease of (-) epicateching (84-99%) and pecatannol (78-98%) with nitrogen fertilization. Fine roots of fertilized Norway spruce showed decreased concentrations of 4-hydroxyacetophenone (33-48%), p-coumaric acid (44-64%), and pecatannol (36-61%). Concentration of p-hydroxybenzoic acid and protocatechuic acid were significantly higher in no fertilized roots. However in both tree species fertilization had no effect on vanillin and quercetin concentration in fine roots. It is suggested that roots of beech and Norway spruce are more susceptible to attacks of pathogens when they are exposed to impact of nitrogen
Show more [+] Less [-]Temporal and spatial variations in nitrogen use efficiency of crop production in China Full text
2022
Yan, Xiaoyuan | Xia, Longlong | Ti, Chaopu
The low value of nitrogen use efficiency (NUE) (around 30%) of crop production in China highlights the necessity to adopt reasonable N managements in national scale. After the implementation of ‘National Soil Testing and Formulated Fertilization’ program in 2005, many field experiments have reported an increase of NUE for crop productions in China. This has prompted discussion regarding the extent to which NUE in crop production has been improved. Here, we analyzed the temporal and spatial changes in NUE (crop N uptake/total N input) and cumulative synthetic and non-synthetic N fertilizer recovery efficiency of crop production in China during 1980–2014, and evaluated the relationship between NUE and economic growth (purchasing power parity, PPP) at national and provincial scale. The results showed that the overall NUE of crop production in China clearly increased from 35 to 42% during 2003–2014, and an increase in NUE was further evidenced by increases in cumulative recovery efficiency of both synthetic and non-synthetic N fertilizer. The relationship between NUE and PPP can be described by an environmental Kuznets curve at the national scale, with NUE first decreasing then increasing with PPP. However, this relationship exhibited large spatial variation: 1) In economically developed (e.g., Guangdong and Zhejiang) and undeveloped provinces (e.g., Yunnan and Guizhou), NUE generally decreased and then remained at low levels (20–35%) as PPP increased. 2) In major agricultural provinces with high (e.g., Shandong and Jiangsu) or intermediate levels (e.g., Hunan and Hebei) of economic development, a pronounced increasing trend in NUE with PPP was observed. These results highlight the necessity of developing region-oriented N management strategies to further increase the NUE of crop production in China, particularly in the economically developed and undeveloped provinces.
Show more [+] Less [-]The influence of soil acidification on N2O emissions derived from fungal and bacterial denitrification using dual isotopocule mapping and acetylene inhibition Full text
2022
Zheng, Qian | Ding, Junjun | Lin, Wei | Yao, Zhipeng | Li, Qiaozhen | Xu, Chunying | Zhuang, Shan | Kou, Xinyue | Li, Yuzhong
Denitrification, as both origins and sinks of N₂O, occurs extensively, and is of critical importance for regulating N₂O emissions in acidified soils. However, whether soil acidification stimulates N₂O emissions, and if so for what reason contributes to stimulate the emissions is uncertain and how the N₂O fractions from fungal (ffD) and bacterial (fbD) denitrification change with soil pH is unclear. Thus, a pH gradient (6.2, 7.1, 8.7) was set via manipulating cropland soils (initial pH 8.7) in North China to illustrate the effect of soil acidification on fungal and bacterial denitrification after the addition of KNO₃ and glucose. For source partitioning, we used and compared SP/δ¹⁸O mapping approach (SP/δ¹⁸O MAP) and acetylene inhibition technique combined isotope two endmember mixing model (AIT-IEM). The results showed significantly higher N₂O emissions in the acidified soils (pH 6.2 and pH 7.1) compared with the initial soil (pH 8.7). The cumulative N₂O emissions during the whole incubation period (15 days) ranged from 7.1 mg N kg⁻¹ for pH 8.7–18.9 mg N kg⁻¹ for pH 6.2. With the addition of glucose, relative to treatments without glucose, this emission also increased with the decrement of pH values, and were significantly stimulated. Similarly, the highest N₂O emissions and N₂O/(N₂O + N₂) ratios (rN₂O) were observed in the pH 6.2 treatment. But the difference was the highest cumulative N₂O + N₂ emissions, which were recorded in the pH 7.1 treatment based on SP/δ¹⁸O MAP. Based on both approaches, ffD values slightly increased with the acidification of soil, and bacterial denitrification was the dominant pathway in all treatments. The SP/δ¹⁸O MAP data indicated that both the rN₂O and ffD were lower compared to AIT-IEM. It has been known for long that low pH may lead to high rN₂O of denitrification and ffD, but our documentation of a pervasive pH-control of rN₂O and ffD by utilizing combined SP/δ¹⁸O MAP and AIT-IEM is new. The results of the evaluated N₂O emissions by acidified soils are finely explained by high rN₂O and enhanced ffD. We argue that soil pH management should be high on the agenda for mitigating N₂O emissions in the future, particularly for regions where long-term excessive nitrogen fertilizer is likely to acidify the soils.
Show more [+] Less [-]Exploring use of a commercial passive sampler in a closed static chamber to measure ammonia volatilization Full text
2022
Jaeman, Sabrina | Nurulhuda, Khairudin | Amin, Adibah Mohd | Sulaiman, Muhammad Firdaus | Man, Hasfalina Che
Studies have indicated that up to 47% of total N fertilizer applied in flooded rice fields may be lost to the atmosphere through NH₃ volatilization. The volatilized NH₃ represents monetary loss and contributes to increase in formation of PM₂.₅ in the atmosphere, eutrophication in surface water, and degrades water and soil quality. The NH₃ is also a precursor to N₂O formation. Thus, it is important to monitor NH₃ volatilization from fertilized and flooded rice fields. Commercially available samplers offer ease of transportation and installation, and thus, may be considered as NH₃ absorbents for the static chamber method. Hence, the objective of this study is to investigate the use of a commercially available NH₃ sampler/absorbent (i.e., Ogawa® passive sampler) for implementation in a static chamber. In this study, forty closed static chambers were used to study two factors (i.e., trapping methods, exposure duration) arranged in a Randomized Complete Block Design. The three trapping methods are standard boric acid solution, Ogawa® passive sampler with acid-coated pads and exposed coated pads without casing. The exposure durations are 1 and 4 h. Results suggest that different levels of absorbed NH₃ was obtained for each of the trapping methods. Highest level of NH₃ was trapped by the standard boric acid solution, followed by the exposed acid-coated pads without casing, and finally acid-coated pads with protective casing, given the same exposure duration. The differences in absorbed NH₃ under same conditions does not warrant direct comparison across the different trapping methods. Any three trapping methods can be used for conducting studies to compare multi-treatments using the static chamber method, provided the same trapping method is applied for all chambers.
Show more [+] Less [-]Inorganic versus organic fertilizers: How do they lead to methylmercury accumulation in rice grains Full text
2022
Sun, Tao | Xie, Qing | Li, Chuxian | Huang, Jinyong | Yue, Caipeng | Zhao, Xuejie | Wang, Dingyong
Both inorganic and organic fertilizers are widely used to increase rice yield. However, these fertilizers are also found to aggravate mercury methylation and methylmercury (MeHg) accumulation in paddy fields. The aim of this study was to reveal the mechanisms of inorganic and organic fertilizers on MeHg accumulation in rice grains, which are not yet well understood. Potting cultures were conducted in which different fertilizers were applied to a paddy soil. The results showed that both inorganic and organic fertilizers increased MeHg concentrations rather than biological accumulation factors (BAFs) of MeHg in mature rice grains. Inorganic fertilizers, especially nitrogen fertilizer, enhanced the bioavailability of mercury and the relative amount Hg-methylating microbes and therefore intensified mercury methylation in paddy soil and MeHg accumulation in rice grains. Unlike inorganic fertilizers, organic matter (OM) in organic fertilizers was the main reason for the increase of MeHg concentrations in rice grains, and it also could immobilize Hg in soil when it was deeply degraded. The enhancement of MeHg concentrations in rice grains induced by inorganic fertilizers (5.18–41.69%) was significantly (p < 0.05) lower than that induced by organic fertilizers (80.49–106.86%). Inorganic fertilizers led to a larger increase (50.39–99.28%) in thousand-kernel weight than MeHg concentrations (5.18–41.69%), resulting in a dilution of MeHg concentrations in mature rice grains. Given the improvement of soil properties by organic fertilizer, increasing the proportion of inorganic fertilizer application may be a better option to alleviate MeHg accumulation in rice grains and guarantee the rice yield in the agricultural production.
Show more [+] Less [-]Sustained rice yields and decreased N runoff in a rice-wheat cropping system by replacing wheat with Chinese milk vetch and sharply reducing fertilizer use Full text
2021
Qiao, Jun | Zhao, Dong | Zhou, Wei | Yan, Tingmei | Yang, Linzhang
Pollution from the paddy fields has posed a threat to surface water quality, and the reactive N in runoff has been recognized as the dominant contributor. In the rice-wheat systems of eastern China, replacing wheat (Triticum aestivum) with Chinese milk vetch (CMV) (Astragalus sinicus) is known to reduce total fertilizer N use and associated N losses during winter; however, the function of the rice-CMV system in controlling the N runoff loss was overlooked during the summer rice-growing season. Over 6 years, we monitored soil mineral N, plant N accumulation, rice grain yield, N agronomic efficiency (AEN), and N runoff in rice-CMV fertilizer N rate-response experiments and made comparisons with the conventional N inputs in rice-wheat rotation. Aboveground CMV residues added 65–116 kg N ha⁻¹ yr⁻¹; therefore, by adjusting the fertilizer time, the rice in this system required 44–56% less N fertilizer to produce rice yields equivalent to the 270 kg N ha⁻¹ (district average, C270) used in the rice-wheat system. In all fertilizer N application treatments, 120 kg ha⁻¹ seemed to be the threshold that ensured the soil N supply, the N accumulation at rice critical stages, and consequently, the current level rice yield. The corresponding runoff N averaged 9.3 kg ha⁻¹ season⁻¹, which was 51.8% less than that in C270 (19.3 kg ha⁻¹ season⁻¹). Cumulative N runoff (total N and NH₄⁺-N) correlated strongly with fertilizer N input for any single year (sample size = 108, P < 0.01). Application of 30–120 kg fertilizer N ha⁻¹ gave an equivalent AEN, which indicated that the integration of CMV and fertilizer N could increase the agronomic efficiency of N fertilizer applied to the rice. Rotating paddy rice with CMV instead of wheat, together with the suitable adjustment of N fertilizer, could sustain rice yield and gain the utmost environmental benefits from rice-based agroecosystems.
Show more [+] Less [-]Nitrogen balance acts an indicator for estimating thresholds of nitrogen input in rice paddies of China Full text
2021
Ding, Wencheng | Xu, Xinpeng | Zhang, Jiajia | Huang, Shaohui | He, Ping | Zhou, Wei
Decision-making related to nitrogen (N) fertilization is a crucial step in agronomic practices because of its direct interactions with agronomic productivity and environmental risk. Here, we hypothesized that soil apparent N balance could be used as an indicator to determine the thresholds of N input through analyzing the responses of the yield and N loss to N balance. Based on the observations from 951 field experiments conducted in rice (Oryza sativa L.) cropping systems of China, we established the relationships between N balance and ammonia (NH₃) volatilization, yield increase ratio, and N application rate, respectively. Dramatical increase of NH₃ volatilizations and stagnant increase of the rice yields were observed when the N surplus exceeded certain levels. Using a piecewise regression method, the seasonal upper limits of N surplus were determined as 44.3 and 90.9 kg N ha⁻¹ under straw-return and straw-removal scenarios, respectively, derived from the responses of NH₃ volatilization, and were determined as 53.0–74.9 and 97.9–112.0 kg N ha⁻¹ under straw-return and straw-removal scenarios, respectively, derived from the maximum-yield consideration. Based on the upper limits of N surplus, the thresholds of N application rate suggested to be applied in single, middle-MLYR, middle-SW, early, and late rice types ranged 179.0–214.9 kg N ha⁻¹ in order to restrict the NH₃ volatilization, and ranged 193.3–249.8 kg N ha⁻¹ in order to achieve the maximum yields. If rice straw was returned to fields, on average, the thresholds of N application rate could be theoretically decreased by 17.5 kg N ha⁻¹. This study provides a robust reference for restricting the N surplus and the synthetic fertilizer N input in rice fields, which will guide yield goals and environmental protection.
Show more [+] Less [-]Improved soil-crop system management aids in NH3 emission mitigation in China Full text
2021
Sha, Zhipeng | Liu, Hejing | Wang, Jingxia | Ma, Xin | Liu, Xuejun | Misselbrook, T. (Tom)
High ammonia (NH₃) emissions from fertilized soil in China have led to various concerns regarding environmental safety and public health. In response to China's blue skies protection campaign, effective NH₃ reduction measures need to consider both mitigation efficiency and food security. In this context, we conducted a meta-analysis (including 2980 observations from 447 studies) to select effective measures based on absolute (AV) and yield-scaled (YSAV) NH₃ volatilization reduction potential, with the aim of establishing a comprehensive NH₃ mitigation framework covering various crop production sectors, and offering a range of potential solutions. The results showed that manipulating crop density, using an intermittent irrigation regime for paddy field rice, applying N as split applications or partially substituting inorganic fertilizer N with organic N sources could achieve reductions in AV and YSAV reduction of 10–20 %; adopting drip irrigation regimes, adding water surface barrier films to paddy fields, or using double inhibitor (urease and nitrification), slow-release or biofertilizers could achieve 20–40 % mitigation; plastic film mulching, applying fertilizer by irrigation or using controlled-release fertilizers could yield 40–60 % reduction; use of a urease inhibitor, fully substituting fertilizer N with organic N, or applying fertilizer by deep placement could decrease AV and YSAV by over 60 %. In addition, use of soil amendments, applying suitable inorganic N sources, or adopting crop rotation, intercropping or a rice-fish production model all had significant benefits to control AV. The adoption of any particular strategy should consider local accessibility and affordability, direct intervention by local/government authorities and demonstration to encourage the uptake of technologies and practices, particularly in NH₃ pollution hotspot areas. Together, this could ensure food security and environmental sustainability.
Show more [+] Less [-]