Refine search
Results 1-10 of 10
Long-term exposure to environmental levels of phenanthrene induces emaciation-thirst disease-like syndromes in female mice
2022
Fang, Lu | Ou, Kunlin | Huang, Jie | Zhang, Shenli | Zhang, Ying | Zhao, Hezhen | Chen, Meng | Wang, Chonggang
Phenanthrene (Phe) is a polycyclic aromatic hydrocarbon widely present in foods and drinking water. To explore the detrimental effects of Phe on body metabolism, female Kunming mice were treated with Phe in drinking water at concentrations of 0.05, 0.5 and 5 ng/mL. After exposure for 270 d, the animals exhibited dose-dependent reduced body weight and increased water consumption. The dose-dependent accumulation of Phe in the brain decreased hypothalamic neuron numbers, upregulated hypothalamic expression of anaplastic lymphoma kinase, elevated norepinephrine levels in white adipose tissue (WAT) and further activated lipolysis in WAT, leading to a reduction in fat mass. Brown adipose tissue formation was reduced, accompanied by the inhibition of the bone morphogenetic protein signaling pathway. A simultaneous reduced serum levels of antidiuretic hormone (arginine vasopressin) might be one of the reasons for increased water consumption. The present results indicate an environmental etiology and prevention way for the development of emaciation-thirst disease.
Show more [+] Less [-]Toxicological effects of atenolol and venlafaxine on zebrafish tissues: Bioaccumulation, DNA hypomethylation, and molecular mechanism
2022
Lin, Wenting | Huang, Zhishan | Ping, Senwen | Zhang, Shuan | Wen, Xiufang | He, Yuhe | Ren, Yuan
The beta-blocker atenolol (ATE), and the selective serotonin and norepinephrine reuptake inhibitor, venlafaxine (VEN) are frequently detected in municipal wastewater effluents, but little is known about their ecotoxicological effect on aquatic animals. Herein, ATE and VEN were selected to explore their accumulation and global DNA methylation (GDM) in zebrafish tissues after a 30-day exposure. Molecular dynamics (MD) stimulation was used to investigate the toxic mechanism of ATE and VEN exposure. The results demonstrated that ATE and VEN could reduce the condition factor of zebrafish. The bioaccumulation capacity for ATE and VEN was in the order of liver > gut > gill > brain and liver > gut > brain > gill, respectively. After a 30-day recovery, ATE and VEN could still be detected in zebrafish tissues when exposure concentrations were ≥10 μg/L. Moreover, ATE and VEN induced global DNA hypomethylation in different tissues with a dose-dependent manner and their main target tissues were liver and brain. When the exposure concentrations of ATE and VEN were increased to 100 μg/L, the global DNA hypomethylation of liver and brain were reduced to 27% and 18%, respectively. In the same tissue exposed to the same concentration, DNA hypomethylation induced by VEN was more serious than that of ATE. After a 30-day recovery, the global DNA hypomethylations caused by the two drugs were still persistent, and the recovery of VEN was slower than that of ATE. The MD simulation results showed that both ATE and VEN could reduce the catalytic activity of DNA Methyltransferase 1 (DNMT1), while the effect of VEN on the 3D conformational changes of the DNMT1 domain was more significant, resulting in a lower DNA methylation rate. The current study shed new light on the toxic mechanism and potential adverse impacts of ATE and VEN on zebrafish, providing essential information to the further ecotoxicological risk assessment of these drugs in the aquatic environment.
Show more [+] Less [-]The effect of 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47) on locomotor behaviour and muscle physiology of the sea cucumber Apostichopus japonicus
2022
Zhuo, Pengji | Ding, Kui | Deng, Beini | Lai, Kaiqi | Zhang, Shuangli | Zhang, Libin | Yang, Hongsheng
The 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) is the predominant congener of polybrominated diphenyl ethers, and it is also a persistent organic pollutant that with a higher detection rate in samples from environment and animals. To date, there have been few studies of the effects of BDE-47 on locomotion in sea cucumbers. In this study, we investigated the influence of different concentrations of BDE-47 (low: 0.1 μg/L; moderate: 1.0 μg/L; high: 10.0 μg/L) on locomotion of Apostichopus japonicus and evaluated changes in their muscle physiology using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. The behavioural studies showed that the average and maximum velocity of movement decreased significantly in both the moderate and high BDE-47 groups after 1 day of exposure. In addition, levels of 55 metabolites were identified and characterized in the longitudinal muscle of A. japonicus exposed to BDE-47. The alteration of taurine and norepinephrine levels indicated that BDE-47 had drastic physiological effects on the longitudinal muscle of A. japonicus.
Show more [+] Less [-]Anti-kindling effect of Ginkgo biloba leaf extract and L-carnitine in the pentylenetetrazol model of epilepsy
2022
Essawy, Amina E. | El-Sayed, Soad Ahmed | Tousson, Ehab | Abd El-gawad, Horeya S. | Alhasani, Reem Hasaballah | Abd Elkader, Heba-Tallah Abd Elrahim
Epilepsy is one of the most common serious brain disorders, affecting about 1% of the population all over the world. Ginkgo biloba extract (GbE) and L-carnitine (LC) reportedly possess the antioxidative activity and neuroprotective potential. In this report, we investigated the possible protective and therapeutic effects of GbE and LC against pentylenetetrazol (PTZ)-induced epileptic seizures in rat hippocampus and hypothalamus. Adult male albino rats were equally divided into eight groups: control, GbE (100 mg/kg), LC (300 mg/kg), PTZ (40 mg/kg), protective groups (GbE + PTZ and LC + PTZ), and therapeutic groups (PTZ + GbE and PTZ + LC). The oxidative stress, antioxidant, and neurochemical parameters, viz., malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), acetylcholine esterase (AchE), dopamine (DA), norepinephrine (NE), and serotonin (5-HT), in the hippocampal and hypothalamic regions have been evaluated. PTZ injection leads to an increase in the seizure score, the levels of MDA and NO, and to a decrease in the activity of GSH, SOD, CAT, and GPx. Besides, monoamine neurotransmitters, DA, NE, and 5-HT, were depleted in PTZ-kindled rats. Furthermore, PTZ administration caused a significant elevation in the activity of AchE. Hippocampal and hypothalamic sections from PTZ-treated animals were characterized by severe histopathological alterations and, intensely, increased the ezrin immunolabeled astrocytes. Pre- and post-treatment of PTZ rats with GbE and LC suppressed the kindling acquisition process and remarkably alleviated all the aforementioned PTZ-induced effects. GbE and LC have potent protective and therapeutic effects against PTZ-induced kindling seizures via the amelioration of oxidative/antioxidative imbalance, neuromodulatory, and antiepileptic actions.
Show more [+] Less [-]Endocrine Disruption in the European Eel, Anguilla anguilla, Exposed to an Environmental Cocaine Concentration
2013
Gay, Flaminia | Maddaloni, Massimo | Valiante, Salvatore | Laforgia, Vincenza | Capaldo, Anna
The aim of the present study was to verify if cocaine, at environmental concentrations, influences the endocrine system of the European eel. Silver eels (a stage of the eel life cycle preparing the fish for the oceanic reproductive migration) were exposed to a nominal cocaine concentration of 20 ng/l during 30 days; at the same time, control, carrier, and postexposure recovery groups were made. The effects of cocaine were observed in (1) brain dopamine content, (2) plasma catecholamine levels (dopamine, norepinephrine, and epinephrine), (3) pituitary–adrenal axis activity [plasma adrenocorticotropic hormone (ACTH), corticosterone, cortisol, and aldosterone levels], and (4) pituitary–thyroid axis activity [plasma thyroid-stimulating hormone (TSH), triiodothyronine, and thyroxine levels]. In the treated group, brain dopamine, plasma catecholamines, cortisol, and TSH levels were higher, whereas ACTH, corticosterone, and triiodothyronine levels were lower than controls. In the postexposure recovery group, brain dopamine, plasma dopamine and epinephrine, and thyroxine levels further increased, whereas plasma norepinephrine, cortisol, and corticosterone levels were similar to treated values. Finally, ACTH and TSH were similar, whereas triiodothyronine levels were lower than controls. Aldosterone levels were unaffected by cocaine exposure. The results of the present study show that cocaine, at environmental concentrations, behaves like an endocrine disruptor changing brain dopamine and plasma catecholamine levels and the activity of pituitary–adrenal/thyroid axes. Since the endocrine system plays a key role in the metabolic and reproductive processes of the eel, our results suggest that environmental cocaine could be considered another cause for the decline in the European eel.
Show more [+] Less [-]Premna odorata extract as a protective agent on neurotoxic effect of aluminum: neurochemical, molecular, and histopathological alterations
2021
Ahmed, Walaa M. S. | Helmy, Nermeen A. | Ibrahim, Marwa A. | Hassan, Hossam M. | Zaki, Amr R.
Premna odorata Blanco (Lamiaceae) is an ethnomedicinal plant, where some reports claimed their anti-inflammatory, cytotoxic, and antituberculosis effects, without investigating its role on the brain. Therefore, forty mature male rats were equally divided into 4 groups; the 1st was kept as control. Rats in groups 2 and 4 were orally given P. odorata extract daily at a dose of 500 mg/kg B.W., while those in groups 3 and 4 were daily administrated aluminum chloride “AlCl₃” (70 mg/kg B.W.). The treatments extended for 30 successive days. At the end of the experimental period, brain samples were collected for biochemical assay of glutathione reductase (GSH), catalase, malondialdehyde (MDA), and acetylcholinesterase activity (AChE). Besides, monoamines (norepinephrine, dopamine, serotonin), amino acids (glutamine, serine, arginine, taurine and gamma-aminobutyric acid (GABA)), neurotransmitters, DNA damage, cyclooxygenase-2 (COX-2), and tumor necrosis factor (TNF)-α genes were estimated. Moreover, brain samples were obtained for histopathological investigation. Aluminum toxicity resulted in a decline of GSH concentration, elevation of MDA, and AChE activity. Except for GABA which exhibited a significant decrease, there was a marked increase in the measured amino acid and monoamine neurotransmitters. Also, an increase in mRNA expressions of TNF-α and COX-2 was detected. It was noticed that Premna odorata extract reduced the oxidative stress and counteracted the augmentations in AChE caused by AlCl₃. Marked improvements in most measured neurotransmitters with downregulation of pro-inflammatory gene expression were recorded in P. odorata + AlCl₃ group. Premna odorata restores the altered histopathological feature induced by AlCl₃. In conclusion, the present findings clarify that P. odorata extract could be important in improving and treatment of neurodegenerative disorders as it was able to reduce oxidative stress, DNA damage, biochemical alterations, and histopathological changes in rats exposed to AlCl₃ toxicity.
Show more [+] Less [-]Determination of endogenous substance change in PM2.5-induced rat plasma and lung samples by UPLC-MS/MS method to identify potential markers for lung impairment
2019
Fan, Ronghua | Ren, Qingquan | Zhou, Tao | Shang, Lei | Ma, Mingyue | Wang, Bolun | Xiao, Chunling
Exposure to fine particulate matter (PM₂.₅) could induce lung impairment aggravation. Moreover, endogenous substances are known to play a significant role in lung impairment. Therefore, the research objectives was to investigate the influence of PM₂.₅-induced lung impairment on the levels of the eight endogenous substances, γ-aminobutyric acid (GABA), acetylcholine (ACh), glutamate (Glu), serotonin (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA), noradrenaline (NE), dopamine (DA), and 3, 4-dihydroxyphenylacetic acid (DOPAC). A sensitive UPLC-MS/MS method for the simultaneous determination of these endogenous substances in rat plasma and lung tissues was developed. The validated method was successfully applied for comparing profiles of analytes in rat plasma and lung tissues. The results indicated that five endogenous substances, namely, GABA, Ach, Glu, DA, and DOPAC, had a significant change in the rats with PM₂.₅-induced lung impairment.
Show more [+] Less [-]Intranasal instillation of iron oxide nanoparticles induces inflammation and perturbation of trace elements and neurotransmitters, but not behavioral impairment in rats
2018
Askri, Dalel | Ouni, Souhir | Galai, Said | Arnaud, Josiane | Chovelon, Benoit | Lehmann, Sylvia G. | Sturm, Nathalie | Sakly, Mohsen | Sève, Michel | Amara, Salem
Over the last decades, engineered nanomaterials have been widely used in various applications due to their interesting properties. Among them, iron oxide nanoparticles (IONPs) are used as theranostic agents for cancer, and also as contrast agents in magnetic resonance imaging. With the increasing production and use of these IONPs, there is an evident raise of IONP exposure and subsequently a higher risk of adverse outcome for humans and the environment. In this work, we aimed to investigate the effects of sub-acute IONP exposure on Wistar rat, particularly (i) on the emotional and learning/memory behavior, (ii) on the hematological and biochemical parameters, (iii) on the neurotransmitter content, and (vi) on the trace element homeostasis. Rats were treated during seven consecutive days by intranasal instillations at a dose of 10 mg/kg body weight. The mean body weight increased significantly in IONP-exposed rats. Moreover, several hematological parameters were normal in treated rats except the platelet count which was increased. The biochemical study revealed that phosphatase alkaline level decreased in IONP-exposed rats, but no changes were observed for the other hepatic enzymes (ALT and AST) levels. The trace element homeostasis was slightly modulated by IONP exposure. Sub-acute intranasal exposure to IONPs increased dopamine and norepinephrine levels in rat brain; however, it did not affect the emotional behavior, the anxiety index, and the learning/memory capacities of rats.
Show more [+] Less [-]Toxicity of five antidepressant drugs on embryo–larval development and metamorphosis success in the Pacific oyster, Crassostrea gigas
2014
Di Poi, C. | Evariste, L. | Serpentini, A. | Halm-Lemeille, M. P. | Lebel, J. M. | Costil, K.
Unlike conventional pollutants, pharmaceutical residues are continuously discharged at low levels (low to mid ng l⁻¹concentrations), which results in the chronic contamination of non-target organisms, but little is known about the effects of these residues. The purpose of this study was to provide the first assessment of the ecotoxicity of five antidepressants (selective serotonin reuptake inhibitors [SSRIs] fluoxetine and sertraline, tricyclic antidepressants [TCAs] clomipramine and amitriptyline, and serotonin norepinephrine reuptake inhibitor [SNRI] duloxetine) at a wide range of concentrations from 0.1 to 100,000 μg l⁻¹on two early life stages in the Pacific oyster. The toxicity was quantified in D-shaped larvae after 36 h of exposure, and in 21-day-old pediveliger larvae after 24 h of exposure using the percentage of normal larval development and the metamorphosis rate as endpoints, respectively. The embryotoxicity assays reported that the EC₅₀values were within the same range of concentrations (67 to 192 μg l⁻¹) for all of the tested molecules. The metamorphosis tests revealed that the antidepressants can be ranked along an increasing severity gradient: clomipramine < amitriptyline < duloxetine ~ fluoxetine. Sertraline appeared to be the less toxic molecule on this endpoint; however, a different concentration range was used. The embryotoxicity test was more sensitive than the metamorphosis bioassay for three of the five molecules tested, but the latter test showed more practical benefits. Overall, the obtained toxicity values were at least 10,000-fold higher than the reported environmental concentrations.
Show more [+] Less [-]PCB126 blocks the thermogenic beiging response of adipocytes
2020
Gourronc, Francoise A. | Perdew, Gary H. | Robertson, Larry W. | Klingelhutz, Aloysius J.
Subcutaneous white adipose tissue is capable of becoming thermogenic in a process that is referred to as “beiging.” Beiging is associated with activation of the uncoupling protein, UCP1, and is known to be important for preventing adipose hypertrophy and development of insulin resistance. Polychlorinated biphenyls (PCBs) accumulate in fat, and it is hypothesized that disruption of adipogenesis and adipocyte function by PCBs may be causative in the development of obesity and diabetes. We developed immortal human subcutaneous preadipocytes that, when differentiated, are capable of beiging. Preadipocytes that were treated with polychlorinated biphenyl congener 126 (PCB126), followed by differentiation, were suppressed for their ability to activate UCP1 upon β-adrenergic stimulation with norepinephrine (NE), demonstrating a block in the beiging response. Treatment of preadipocytes with another known endogenous AhR agonist, indoxyl sulfate (IS), followed by differentiation also blocked the NE-stimulated upregulation of UCP1. Knockdown of the aryl hydrocarbon receptor (AhR) caused the preadipocytes to be refractory to PCB126 and IS effects. The chemical AhR antagonist, CH223191, was effective at preventing the effects of PCB126 but not IS, indicating AhR ligand specificity of CH223191. Repression of NE-induced UCP1 upregulation was also observed when already-differentiated mature adipocytes were treated with PCB126 but not IS. These results indicate that exposure of preadipocytes to endogenous (IS) or exogenous (PCB126) AhR agonists is effective at blocking them from becoming functional adipocytes that are capable of the beiging response. Mature adipocytes may have differential responses. This finding suggests a mechanism by which dioxin-like PCBs such as PCB126 could lead to disruption in energy homeostasis, potentially leading to obesity and diabetes.
Show more [+] Less [-]