Refine search
Results 1-10 of 11
Metal accumulation in dragonfly nymphs and crayfish as indicators of constructed wetland effectiveness
2020
Fletcher, Dean E. | Lindell, Angela H. | Stankus, Paul T. | Fletcher, Nathaniel D. | Lindell, Brooke E. | McArthur, J. Vaun
Constructed wetland effectiveness is often assessed by measuring reductions of contaminant concentrations in influent versus departing effluent, but this can be complicated by fluctuations in contaminant content/chemistry and hydrology. We assessed effectiveness of a constructed wetland at protecting downstream biota from accumulating elevated metal concentrations—particularly copper and zinc in effluents from a nuclear materials processing facility. Contaminants distributed throughout a constructed wetland system and two reference wetlands were assessed using six dragonfly nymph genera (Anax, Erythemis, Libellula, Pachydiplax, Tramea, and Plathemis) as biomonitors. Additionally, the crayfish, Cambarus latimanus, were analyzed from the receiving and two reference streams. Concentrations of Cu, Zn, Pb, Mn, Cr, Cd, and Al were evaluated in 597 dragonfly nymph and 149 crayfish whole-body composite samples. Dragonfly genera varied substantially in metal accumulation and the ability to identify elevated metal levels throughout components of the constructed wetland. Genera more closely associated with bottom sediments tended to accumulate higher levels of metals with Libellula, Pachydiplax, and Erythemis often accumulating highest concentrations and differing most among sites. This, combined with their abundance and broad distributions make the latter two species suitable candidates as biomonitors for constructed wetlands. As expected, dragonfly nymphs accumulated higher metal concentrations in the constructed wetland than reference sites. However, dragonfly nymphs often accumulated as high of metal concentrations downstream as upstream of the water treatment cells. Moreover, crayfish from the receiving stream near the constructed wetland accumulated substantially higher Cu concentrations than from downstream locations or reference streams. Despite reducing metal concentrations at base flow and maintaining regulatory compliance, metal fluxes from the wetland were sufficient to increase accumulation in downstream biota. Future work should evaluate the causes of downstream accumulation as the next step necessary to develop plans to improve the metal sequestering efficiency of the wetland under variable flow regimes.
Show more [+] Less [-]Thiacloprid affects trophic interaction between gammarids and mayflies
2012
Englert, D. | Bundschuh, M. | Schulz, R.
Neonicotinoid insecticides like thiacloprid enter agricultural surface waters, where they may affect predator–prey-interactions, which are of central importance for ecosystems as well as the functions these systems provide. The effects of field relevant thiacloprid concentrations on the leaf consumption of Gammarus fossarum (Amphipoda) were assessed over 96 h (n = 13–17) in conjunction with its predation on Baetis rhodani (Ephemeroptera) nymphs. The predation by Gammarus increased significantly at 0.50–1.00 μg/L. Simultaneously, its leaf consumption decreased with increasing thiacloprid concentration. As a consequence of the increased predation at 1.00 μg/L, gammarids' dry weight rose significantly by 15% compared to the control. At 4.00 μg/L, the reduced leaf consumption was not compensated by an increase in predation causing a significantly reduced dry weight of Gammarus (∼20%). These results may finally suggest that thiacloprid adversely affects trophic interactions, potentially translating into alterations in ecosystem functions, like leaf litter breakdown and aquatic-terrestrial subsidies.
Show more [+] Less [-]Uptake, toxicity, and maternal transfer of cadmium in the oribatid soil mite, Oppia nitens: Implication in the risk assessment of cadmium to soil invertebrates
2020
Fajana, Hamzat O. | Jegede, Olukayode O. | James, Kyle | Hogan, Natacha S. | Siciliano, Steven D.
Cadmium (Cd) is a heavy metal of concern in contaminated sites because of its high toxicity to soil biota and humans. Typically, Cd exposure is thought to be dominated by dissolved Cd in soil pore water and, thus, dermal uptake. In this study, we investigated the uptake, toxicity, and maternal transfer of Cd in a standard soil invertebrate, the oribatid mite (Oppia nitens), which is common to boreal and temperate ecozones. We found total soil Cd predicted Cd uptake in adult and juvenile O. nitens with no significant uptake from pore water by juvenile mites. Cadmium significantly inhibited juvenile production and recruitment as well as reduced adult fecundity. Adult O. nitens maternally transferred 39–52% of their Cd body burden to juveniles (tritonymphs) while the maternally-acquired Cd accounted for 41% of the juvenile internal Cd load. Our results suggest that dermal adsorption of metal ions is not important for O. nitens and that maternal transfer of Cd in soil invertebrates has ecological and toxicological implications for populations of soil invertebrates. Maternal transfer should be incorporated as a criterion in setting environmental soil quality guidelines (SQGE) for cadmium and other non-essential heavy metals.
Show more [+] Less [-]Toxicity of crude oil to the mayfly, Hexagenia bilineata (Ephemeroptera: Ephemeridae)
1995
Ort, M.P. | Finger, S.E. | Jones, J.R. (Midwest Science Center, National Biological Survey, Department of the Interior, 4200 New Haven Rd, Columbia, MO 65201-9634 (USA))
High level of methylmercury exposure causes persisted toxicity in Nauphoeta cinerea
2020
Piccoli, Bruna C. | Alvim, Jéssica C. | da Silva, Fernanda D. | Nogara, Pablo A. | Olagoke, Olawande C. | Aschner, Michael | Oliveira, Cláudia S. | Rocha, João B. T.
Methylmercury (MeHg⁺) is a neurotoxicant abundantly present in the environment. The long-term effects of MeHg⁺ have been investigated in rodents, yet data on the long-term or persisted toxicity of MeHg⁺ in invertebrates is scanty. Here, we examined the acute, intermediate, and chronic effects upon dietary administration of MeHg⁺ in nymphs of Nauphoeta cinerea. Besides, the potential reversibility of the toxic effects of MeHg⁺ after a detoxification period was evaluated. Nymphs were exposed to diets containing 0 (control), 2.5, 25, and 100 μg MeHg⁺/g of diet for 10, 30, and 90 days. Additional groups of nymphs were fed with the same dose of MeHg⁺ for 30 days and then were subjected to a detoxification period for 60 days. The nymphs exposed to 100 μg MeHg⁺/g succumbed to a high mortality rate, along with multiple biochemical (increase of reactive oxygen species production and glutathione S-transferase activity, as well as decrease in the acetylcholinesterase activity) and behavioral alterations. We observed delayed mortality rate and behavioral alterations in nymphs exposed to 100 μg MeHg⁺/g for 30 days and subsequently subjected to 60 days of detoxification. However, the biochemical alterations did not persist throughout the detoxification period. In conclusion, our results established the persistent toxic effect of MeHg⁺ even after a prolonged detoxification period and evidenced the use of N. cinerea as an alternative model to study the toxicity of MeHg⁺.
Show more [+] Less [-]Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators
2018
Papanikolaou, NikosE. | Kalaitzaki, Argyro | Karamaouna, Filitsa | Michaelakis, Antonios | Papadimitriou, Vassiliki | Dourtoglou, Vassilis | Papachristos, DimitriosP.
The insecticidal activity of a new nano-formulated natural pyrethrin was examined on the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), and the predators Coccinella septempunctata L. (Coleoptera: Coccinellidae) and Macrolophus pygmaeus Rambur (Hemiptera: Miridae), in respect with the nano-scale potential to create more effective and environmentally responsible pesticides. Pyrethrin was nano-formulated in two water-in-oil micro-emulsions based on safe biocompatible materials, i.e., lemon oil terpenes as dispersant, polysorbates as stabilizers, and mixtures of water with glycerol as the dispersed aqueous phase. Laboratory bioassays showed a superior insecticidal effect of the pyrethrin micro-emulsions compared to two commercial suspension concentrates of natural pyrethrins against the aphid. The nano-formulated pyrethrins were harmless, in terms of caused mortality and survival time, to L3 larvae and four-instar nymphs of the predators C. septempunctata and M. pygmaeus, respectively. We expect that these results can contribute to the application of nano-technology in optimization of pesticide formulation, with further opportunities in the development of effective plant protection products compatible with integrated pest management practices.
Show more [+] Less [-]Impact of insecticide exposure on the predation activity of the European earwig Forficula auricularia
2015
Malagnoux, Laure | Capowiez, Yvan | Rault, Magali
The European earwig Forficula auricularia is an effective predator in apple orchards. It is therefore crucial to study whether insecticides affect this natural pest control agent. Predation activity, i.e., the number of aphids eaten in 24 h, was determined under laboratory conditions after exposure of fourth-instar nymphs and adult earwigs to widely used insecticides (acetamiprid, chlorpyrifos-ethyl, deltamethrin, and spinosad), which were applied at the normal application rates. Inhibition of acetylcholinesterase and carboxylesterase activities were also measured as indicators of pesticide exposure. Predation activity decreased significantly in nymphs exposed to spinosad (62 %) and chlorpyrifos-ethyl (98 %) compared with controls. A similar response was found for both esterase activities. Spinosad had a stronger effect on AChE (−33 %) whereas chlorpyrifos-ethyl affected CbE activity preferentially (−59 %). Spinosad (20 % of controls), acetamiprid (28 %), and chlorpyrifos-ethyl (66 %) also significantly decreased the predation behavior of adult male but not female (5 to 40 %) earwigs. Adult AChE and CbE activities were also significantly reduced (28 to 67 % of controls) in pesticide-exposed earwigs. Our results suggest that earwigs should be included in the environmental risk assessment framework for authorization of newly marketed plant protection products. Their predation behavior appears to be a sensitive and complementary biomarker.
Show more [+] Less [-]Effects of dietary fluoranthene on nymphs of Blaptica dubia S. (Blattodea: Blaberidae)
2019
Mrdaković, Marija | Ilijin, Larisa | Vlahović, Milena | Filipović, Aleksandra | Grčić, Anja | Todorović, Dajana | Perić-Mataruga, Vesna
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants which exert detrimental effects on living beings. Considering the health risk associated with exposure to these pollutants, their presence in food increases efforts to establish early-warning indicators of pollution. We aimed to examine the effects of environmentally relevant concentrations of fluoranthene (0.2 ng and 18 ng/g dry weight of diet) on the activities of midgut antioxidant and detoxification enzymes in Blaptica dubia. Significant changes of superoxide dismutase and catalase activities, recorded at the higher fluoranthene concentration regardless of the exposure time, suggest that they may be used as biomarkers of PAH pollution. Increased GST activity and decreased total GSH content, detected upon acute exposure to the lower concentration, indicate processes of detoxification. Reorganization of B. dubia mechanisms of defense in response to oxidative stress caused by exposure to dietary PAH point to the necessity for further examination of fluoranthene actions.
Show more [+] Less [-]Antioxidant enzyme activity in responses to environmentally induced oxidative stress in the 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae)
2019
Yousef, Hesham A. | Abdelfattah, Eman A. | Augustyniak, Maria
The response of antioxidant enzymes to oxidative environmental stress was determined in 5th instar nymphs of Aiolopus thalassinus (Orthoptera: Acrididae) collected from sites with different level of pollution with heavy metals, PO₄³⁻, and SO₄²⁻. The high polluted site induced higher DNA damage to individuals compared to the control site. The highest values of tail length (TL), tail moment (TM), and percent of DNA in tail (TDNA) were found in the gut of 5th instar nymphs from a high polluted site. Also, protein carbonyls and lipid peroxide levels were significantly higher in insects collected from polluted sites compared to those from the control site. A strong positive correlation between both protein carbonyl and lipid peroxide concentration and the pollution level of the sites was found in all tissues of the insects. The activity of superoxide dismutase (SOD) in the brain of insects collected from the high polluted site was significantly higher than that in the thoracic muscles and gut. We observed strong inhibition of catalase (CAT) activity. This effect was apparently caused by pollutants present at the high polluted site. The level of pollution significantly influenced polyphenol oxidase (PPO) activity in A. thalassinus nymphs in all examined tissues. The highest values were observed in the brain. The relationship between pollution and ascorbate peroxidase (APOX) activity in the examined tissues had no clear tendency. However, the lowest APOX activity was observed in individuals from the low polluted site. Level of pollution of sampling sites, oxidative stress biomarkers, and enzymatic response in A. thalanthsis 5th instar were negatively or positively correlated. Oxidative damage parameters, especially the percent of severed cells, lipid peroxides, and the activity of APOX, can be perceived as good markers of environmental multistress.
Show more [+] Less [-]Were the sharp declines of dragonfly populations in the 1990s in Japan caused by fipronil and imidacloprid? An analysis of Hill’s causality for the case of Sympetrum frequens
2018
Nakanishi, Kosuke | Yokomizo, Hiroyuki | Hayashi, Takehiko I.
Neonicotinoids and fipronil are the most widely used insecticides in the world. Previous studies showed that these compounds have high toxicity to a wide taxonomic range of non-target invertebrates. In rice cultivation, they are frequently used for nursery-box treatment of rice seedlings. The use of fipronil and neonicotinoid imidacloprid is suspected to be the main cause of population declines of red dragonflies, in particular Sympetrum frequens, because they have high lethal toxicity to dragonfly nymphs and the timing of the insecticides’ introduction in Japan (i.e., the late 1990s) overlapped with the sharp population declines. However, a causal link between application of these insecticides and population declines of the dragonflies remains unclear. Therefore, we estimated the amount of the insecticides applied for nursery-box treatment of rice seedlings and analyzed currently available information to evaluate the causality between fipronil and imidacloprid usage and population decline of S. frequens using Hill’s causality criteria. Based on our scoring of Hill’s nine criteria, the strongest lines of evidence were strength, plausibility, and coherence, whereas the weakest were temporality and biological gradient. We conclude that the use of these insecticides, particularly fipronil, was a major cause of the declines of S. frequens in Japan in the 1990s, with a high degree of certainty. The existing information and our analyses, however, do not allow us to exclude the possibility that some agronomic practices (e.g., midsummer drainage or crop rotation) that can severely limit the survival of aquatic nymphs also played a role in the dragonfly’s decline.
Show more [+] Less [-]