Refine search
Results 1-10 of 74
Treatment of industrial effluents in constructed wetlands: Challenges, operational strategies and overall performance
2015
The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents.
Show more [+] Less [-]Terrestrial exposure of oilfield flowline additives diminish soil structural stability and remediative microbial function
2011
George, S.J. | Sherbone, J. | Hinz, C. | Tibbett, M.
Onshore oil production pipelines are major installations in the petroleum industry, stretching many thousands of kilometres worldwide which also contain flowline additives. The current study focuses on the effect of the flowline additives on soil physico-chemical and biological properties and quantified the impact using resilience and resistance indices. Our findings are the first to highlight deleterious effect of flowline additives by altering some fundamental soil properties, including a complete loss of structural integrity of the impacted soil and a reduced capacity to degrade hydrocarbons mainly due to: (i) phosphonate salts (in scale inhibitor) prevented accumulation of scale in pipelines but also disrupted soil physical structure; (ii) glutaraldehyde (in biocides) which repressed microbial activity in the pipeline and reduced hydrocarbon degradation in soil upon environmental exposure; (iii) the combinatory effects of these two chemicals synergistically caused severe soil structural collapse and disruption of microbial degradation of petroleum hydrocarbons.
Show more [+] Less [-]Characterization of crude oil degrading bacterial communities and their impact on biofilm formation
2021
Elumalai, Punniyakotti | Parthipan, Punniyakotti | AlSalhi, Mohamad S. | Huang, Mingzhi | Devanesan, Sandhanasamy | Karthikeyan, Obulisami Parthiba | Kim, Woong | Rajasekar, Aruliah
In the present study, produced water sample collected from the Indian crude oil reservoir is used to enrich the bacterial communities. The impact of these enriched bacterial communities on the biodegradation of crude oil, biofilm formation, and biocorrosion process are elucidated. A crude oil degradation study is carried out with the minimal salt medium and 94% of crude oil was utilized by enriched bacterial communities. During the crude oil degradation many enzymes including alkane hydroxylase, alcohol dehydrogenase, and lipase are playing a key role in the biodegradation processes. The role of enriched bacterial biofilm on biocorrosion reactions are monitored by weight loss studies and electrochemical analysis. Weight loss study revealed that the biotic system has vigorous corrosion attacks compared to the abiotic system. Both AC-Impedance and Tafel analysis confirmed that the nature of the corrosion reaction take place in the biotic system. Very less charge transfer resistance and higher corrosion current are observed in the biotic system than in the abiotic system. Scanning electron microscope confirms that the dense biofilm formation favoured the pitting type of corrosion. X-ray diffraction analysis confirms that the metal oxides formed in the corrosion systems (biotic). From the metagenomic analysis of the V3–V4 region revealed that presence of diverse bacterial communities in the biofilm, and most of them are uncultured/unknown. Among the known genus, Bacillus, Halomonas, etc are dominant in the enriched bacterial biofilm sample. From this study, we conclude that the uncultured bacterial strains are found to be playing a key role in the pitting type of corrosion and they can utilize crude oil hydrocarbons, which make them succeeded in extreme oil reservoir environments.
Show more [+] Less [-]Environmental impact and recovery of the Bohai Sea following the 2011 oil spill
2020
Wang, Yujue | Lee, Kenneth | Liu, Dongyan | Guo, Jie | Han, Qiuying | Liu, Xihan | Zhang, Jingjing
The 2011 spill at platforms B and C of the Penglai 19-3 oil field in the Bohai Sea has been the worst oil spill accident in China. To assess long-term effects, a comprehensive monitoring program of chemical and biological variables (within a 2.2 km radius of the spill site) was conducted five years after the spill. Comparison of nutrient, Chl-a and oil concentrations in seawater, TOC, PAHs, heavy metals concentrations within the sediments, and the abundance and biomass of macrobenthic organisms to values obtained before and after the oil spill in previous studies indicate habitat recovery has occurred within the Bohai Sea following the episodic oil release. Observed elevated oil concentration in the water column and higher concentrations of two heavy metals, five PAHs, TOC, TOC/TN and lower values of δ¹³C, together with a reduction in macrobenthic biomass in near-field samples, suggest the influence of contaminants from chronic releases of oil and operational waste discharges within the vicinity of the oil platforms.
Show more [+] Less [-]Bioremediation of petroleum-contaminated saline soil by Acinetobacter baumannii and Talaromyces sp. and functional potential analysis using metagenomic sequencing
2022
Liu, Xiaoyan | He, Lihong | Zhang, Xinying | Kong, Dewen | Chen, Zongze | Lin, Jia | Wang, Chuanhua
Microbial remediation is a potential remediation method for petroleum-contaminated soil. In order to explore the petroleum degradation mechanism by microorganisms, the oilfield soil was remedied by Acinetobacter baumannii combined with Talaromyces sp. The degradation mechanism was studied by analyzing soil microbial community and functional genes through metagenomics during the degradation process. The result showed the degradation rate of petroleum was 65.6% after 28 days. The concentration of petroleum decreased from 1220 mg/kg to 420 mg/kg. In the co-culture group, Acinetobacter baumannii became the dominant species, the annotated genes of it at the species level accounted for 7.34% while that of Talaromyces sp. accounted for only 0.34%. Meanwhile, the annotated genes of Bacillus, Halomonas, and Nitriliruptor at the genus level were up-regulated by 1.83%, 0.90%, and 0.71%, respectively. In addition, large functional genes were significantly up-regulated, including the peroxisome, P450 enzyme (CYP53, CYP116, CYP102, CYP645), and biofilm formulation, promoting the oxidation and hydroxylation, and catalyzing the epoxidation of aromatic and aliphatic hydrocarbons. Meanwhile, the degrading genes of alkanes and aromatic hydrocarbons were expressed promotionally, and degradation pathways were deduced. In conclusion, the inoculation of Acinetobacter baumannii combined with Talaromyces sp. accelerated the degradation of petroleum in oilfield soil and improved the growth of indigenous petroleum-degrading bacteria. Many functional genes related to petroleum degradation were promoted significantly. These results proved the co-culture of bacteria-fungi consortium contributes to the bioremediation of petroleum-contaminated soil.
Show more [+] Less [-]Geospatial assessment of oil spill pollution in the Niger Delta of Nigeria: An evidence-based evaluation of causes and potential remedies
2020
Akinwumiju, Akinola S. | Adelodun, Adedeji A. | Ogundeji, Seyi E.
Based on the archival data on oil facilities, oil spill incidents, and environmental conditions, we researched the plausible causes of oil spill disasters in the Niger Delta of Nigeria between 2006 and 2019. The data were analyzed for geospatial and statistical patterns, using ArcGIS and R programming platforms, respectively. A fuzzy logic algorithm was employed to generate three oil spill disaster models (hazard, vulnerability, and risk). Ordinary Least Square algorithm was adopted to model the relationships between oil spill and two sets of predictor variables: oil facilities (oil well, flow station, and pipeline) and disaster models. We found that, during the 23 years, the Niger Delta experienced 7940 oil spill incidents, of which 67% occurred onshore. A total of 4,950, 501, 855 episodes were attributed to sabotage, corrosion, and equipment failure, with 87%, 62%, and 45% occurring onshore, respectively. Besides, 81% of the 5320 onshore oil spill cases were attributed to sabotage, while corrosion and equipment failure accounted for mere 6% and 7% of the incidents, respectively. The estimated average risk index (R = 0.20) shows that the risk of an oil spill disaster in the Niger Delta is low. Whereas, 5% of the region is characterized by a high risk of oil spill disaster. Furthermore, the regression model infers that the oil spillages exhibit a positive relationship with disaster models and oil facilities at α = 0.10. However, only 16% of the incidents were explained by disaster models, while the oil facilities account for 23% of the total cases, indicating the influence of other factors. To avert further socio-environmental damage in the Niger-Delta, oil theft and sabotage should be curbed, polluted areas are remediated, and an all-inclusive socio-economic development is prioritized.
Show more [+] Less [-]Maternal exposure to short-to medium-term outdoor air pollution and obstetric and neonatal outcomes: A systematic review
2019
Melody, Shannon M. | Ford, Jane | Wills, Karen | Venn, Alison | Johnston, Fay H.
Little is known about the impacts of maternal exposure to acute episodes of outdoor air pollution, such as that resulting from wildfires, on obstetric and neonatal outcomes. This systematic review aims to synthesise the existing literature exploring the relationship between maternal exposure to short-to medium-term changes in outdoor air quality and obstetric and neonatal outcomes.A systematic search of peer-reviewed articles using PubMed, Cochrane Library, EMBASE, ScienceDirect, Web of Science, ProQuest, GreenFILE and Scopus was conducted in January 2018 using selected search terms. Quality of included studies were assessed using the Newcastle Ottawa Scale.Eleven studies were included; eight assessed the impact of maternal exposure to air pollution exacerbation events, such as wildfires, oil well fires and volcanic eruptions, and three assessed the impact of improvement events, such as the 2018 Beijing Olympics and closure of industrial activities, on obstetric and neonatal outcomes. Studies were highly heterogenous in methodology. Six studies found a significant association between acute changes in air quality and markers of fetal growth restriction, while two did not. Three studies found an adverse association between acute changes in air quality and markers of gestational maturity, and one did not.Overall, there is some evidence that maternal exposure to acute changes in air quality of short-to medium-term duration increases the risk of fetal growth restriction and preterm birth. The relationship for other adverse obstetric or neonatal outcomes is less clear.
Show more [+] Less [-]Spatial distribution, partitioning, ecological risk and source apportionment of potential toxic elements in water and sediments of the Hoor Al-Azim wetland and their bioaccumulation in selected commercial fish species
2021
Sheikh Fakhradini, Sara | Moore, Farid | Keshavarzi, Behnam | Naidu, R. | Wijayawardena, Ayanka | Soltani, Naghmeh | Rostami, Soqra
The potentially toxic elements (PTEs) concentrations in water and sediments were measured in the Hoor Al-Azim wetland to evaluate the spatial distribution, pollution rate, fate, partitioning, and ecological risk and also to recognize the PTEs sources in sediments using MLR-APCs (multiple linear regression-absolute principal component scores) receptor model. The human health risk was investigated based on the seven fish species consumed in the study area. Based on the results, water and sediment contamination was observed at some stations in the southern part of the wetland where agricultural water drains. Also, the sediments of oil well drilling disposal site was polluted by PTEs. Based on the MLR-APCs model, 80.8% of Mo and 81.5% of Se originated from agricultural source. Total target hazard quotients (TTHQ) values suggested that the children could experience adverse health effects due to consumption of Coptodon zillii, Aspius vorax, Carassius auratus and Carasobarbus luteus.
Show more [+] Less [-]Modeling atmospheric volatile organic compound concentrations resulting from a deepwater oil well blowout – Mitigation by subsea dispersant injection
2018
Crowley, Deborah | French-McCay, Deborah | Santos, L. (Lynne) | Chowdhury, Biswanath | Markussen, Robin
The atmospheric concentrations of volatile organic compounds (VOCs) generated by surface slicks during an oil spill have not been extensively studied. We modeled oil transport and fate, air emissions, and atmospheric dispersion of VOCs from a hypothetical deepwater well blowout in De Soto Canyon of the Gulf of Mexico assuming no intervention and use of SubSea Dispersant Injection (SSDI) at the source during three week-long periods representing different atmospheric mixing conditions. Spatially varying time histories of atmospheric VOCs within ~2 km from the release site were estimated. As compared to the no-intervention case, SSDI dispersed the discharged oil over a larger water volume at depth and enhanced VOC dissolution and biodegradation, thereby reducing both the total mass of VOCs released to the atmosphere and the concentration of VOCs within 2 km from the release site. Atmospheric conditions also influenced the VOC concentrations, although to a lesser degree than SSDI.
Show more [+] Less [-]Behavior and dynamics of bubble breakup in gas pipeline leaks and accidental subsea oil well blowouts
2018
Wang, Binbin | Socolofsky, Scott A. | Lai, Chris C.K. | Adams, E Eric | Boufadel, Michel C.
Subsea oil well blowouts and pipeline leaks release oil and gas to the environment through vigorous jets. Predicting the breakup of the released fluids in oil droplets and gas bubbles is critical to predict the fate of petroleum compounds in the marine water column. To predict the gas bubble size in oil well blowouts and pipeline leaks, we observed and quantified the flow behavior and breakup process of gas for a wide range of orifice diameters and flow rates. Flow behavior at the orifice transitions from pulsing flow to continuous discharge as the jet crosses the sonic point. Breakup dynamics transition from laminar to turbulent at a critical value of the Weber number. Very strong pure gas jets and most gas/liquid co-flowing jets exhibit atomization breakup. Bubble sizes in the atomization regime scale with the jet-to-plume transition length scale and follow −3/5 power-law scaling for a mixture Weber number.
Show more [+] Less [-]