Refine search
Results 1-10 of 36
Habitat selection by marine larvae in changing chemical environments Full text
2017
Lecchini, David | Dixson, Danielle L. | Lecellier, Gael | Roux, Natacha | Frederich, Bruno | Besson, Marc | Tanaka, Y. | Banaigs, Bernard | Nakamura, Yohei | AFFISH-RC - Applied and Fundamental FISH Research Center - ULiège
peer reviewed | The replenishment and persistence of marine species is contingent on dispersing larvae locating suitable habitat and surviving to a reproductive stage. Pelagic larvae rely on environmental cues to make behavioural decisions with chemical information being important for habitat selection at settlement. We explored the sensory world of crustaceans and fishes focusing on the impact anthropogenic alterations (ocean acidification, red soil, pesticide) have on conspecific chemical signals used by larvae for habitat selection. Crustacean (Stenopus hispidus) and fish (Chromis viridis) larvae recognized their conspecifics via chemical signals under control conditions. In the presence of acidified water, red soil or pesticide, the ability of larvae to chemically recognize conspecific cues was altered. Our study highlights that recruitment potential on coral reefs may decrease due to anthropogenic stressors. If so, populations of fishes and crustaceans will continue their rapid decline; larval recruitment will not replace and sustain the adult populations on degraded reefs.
Show more [+] Less [-]Episodes of high tropospheric ozone reduce nodulation, seed production and quality in soybean (Glycine max (L.) merr.) on low fertility soils Full text
2021
Biancari, Lucio | Cerrotta, Clara | Menéndez, Analía I. | Gundel, Pedro E. | Martínez-Ghersa, M Alejandra
Driven by human activities, air pollution and soil degradation are threatening food production systems. Rising ozone in the troposphere can affect several physiological processes in plants and their interaction with symbiotic microorganisms. Plant responses to ozone may depend on both soil fertility and the ontogenetic stage in which they are exposed. In this work, we studied the effects of ozone episodes and soil fertility on soybean plants. We analysed soybean plant responses in the production of aboveground and belowground biomass, structural and functional attributes of rhizobia, and seed production and quality. The experiment was performed with plants grown in two substrates with different fertility (commercial soil, and soil diluted (50%, v/v) with sand). Plants were exposed to acute episodes of ozone during vegetative and reproductive stages. We observed that ozone significantly reduced belowground biomass (≈25%), nodule biomass (≈30%), and biological nitrogen fixation (≈21%). Plants exposed to ozone during reproductive stage growing in soil with reduced fertility had lower seed production (≈10% lower) and seed protein (≈12% lower). These responses on yield and quality can be explained by the observed changes in belowground biomass and nitrogen fixation. The negative impact of ozone on the symbiotic interaction with rhizobia, seed production and quality in soybean plants were greater in soils with reduced fertility. Our results indicate that food security could be at risk in the future if trends in ozone concentration and soil degradation processes continue to increase.
Show more [+] Less [-]Combining metal and stable isotope analyses to disentangle contaminant transfer in a freshwater community dominated by alien species Full text
2021
Balzani, Paride | Haubrock, Phillip J. | Russo, Francesco | Kouba, Antonín | Haase, Peter | Veselý, Lukáš | Masoni, Alberto | Tricarico, Elena
Freshwater ecosystems are negatively impacted by various pollutants, from agricultural, urban and industrial wastewater, with metals being one of the largest concerns. Moreover, freshwater ecosystems are often affected by alien species introductions that can modify habitats and trophic relationships. Accordingly, the threat posed by metals interacts with those by alien species, since the latter can accumulate and transfer these substances across the food web to higher trophic levels. How metals transfer within such communities is little studied. We analysed the concentration of 14 metals/metalloids (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, Zn, hereafter ‘metal(s)’) of eight fish and three crustacean species co-existing in the Arno River (Central Italy), most of which were alien. To assess the pathway of contaminants within the community, we coupled metal analysis with carbon and nitrogen stable isotope analysis derived from the same specimens. Crustaceans showed higher metal concentration than fish, except for Cd, Hg and Se that were higher in fish. We found evidence of trophic transfer for six metals (Cd, Cr, Hg, Mg, Se, Zn). Additionally, ontogenetic differences and differences among various fish tissues (muscle, liver, and gills) were found in metals concentration. Considerable biomagnification along the trophic chain was found for Hg, while other metals were found to biodilute. Using stable isotopes and Hg as a third diet tracer, we refined the estimations of consumed preys in the diet previously reconstructed with stable isotope mixing models. Alien species reach high biomass and can both survive to and accumulate high pollutants concentrations, potentially posing a risk for their predators and humans. A combined effect of environmental filtering and increased competition may potentially contribute to the disappearance of native species with lower tolerances.
Show more [+] Less [-]Use of resources and microplastic contamination throughout the life cycle of grunts (Haemulidae) in a tropical estuary Full text
2018
Silva, José D.B. | Barletta, Mario | Lima, André R.A. | Ferreira, Guilherme V.B.
The distribution, feeding ecology and microplastic contamination were assessed in different ontogenetic phases of Haemulidae species inhabiting the Goiana Estuary, over a seasonal cycle. Pomadasys ramosus and Haemulopsis corvinaeformis are estuarine dependent species that use habitats with specific environmental conditions each season. Pomadasys ramosus was found in the upper and middle estuaries during the rainy season, when salinity showed the lowest values. Haemulopsis corvinaeformis was found in the lower estuary during the dry season, when salinity increased in the estuary. Juveniles of P. ramosus are zooplanktivores, feeding mainly on calanoid copepods. Sub-adults and adults are zoobenthivores, feeding on invertebrates associated to the bottom, mainly Polychaeta. Juveniles of H. corvinaeformis were not found in the main channel, but sub-adults and adults showed a zoobenthivore habit, feeding mainly on Anomalocardia flexuosa (Mollusca: Bivalvia). Dietary shifts along the life cycle and the spatio-temporal relationship between their distribution and the availability of microplastics along the estuary seem to have a strong influence in the ingestion of microfilaments. The highest average ingestion of microfilaments by P. ramosus coincided with the peak of ingestion of Polychaeta by sub-adults in the upper estuary during the late rainy season. For H. corvinaeformis the highest ingestion of microfilaments coincided with the peak of ingestion of A. flexuosa by adults in the lower estuary during the late dry season. Such contamination might be attributed to the time when these phases shifted to a more diverse diet and began to forage on benthic invertebrates. Research on microplastic contamination must consider species-specific behaviour, since the intake of microplastics is dependent on patterns of distribution and trophic guild within fish assemblages.
Show more [+] Less [-]Advances in understanding ozone impact on forest trees: Messages from novel phytotron and free-air fumigation studies Full text
2010
Matyssek, R. | Karnosky, D.F. | Wieser, G. | Percy, K. | Oksanen, E. | Grams, T.E.E. | Kubiske, M. | Hanke, D. | Pretzsch, H.
Recent evidence from novel phytotron and free-air ozone (O3) fumigation experiments in Europe and America on forest tree species is highlighted in relation to previous chamber studies. Differences in O3 sensitivity between pioneer and climax species are examined and viewed for trees growing at the harsh alpine timberline ecotone. As O3 apparently counteracts positive effects of elevated CO2 and mitigates productivity increases, response is governed by genotype, competitors, and ontogeny rather than species per se. Complexity in O3 responsiveness increased under the influence of pathogens and herbivores. The new evidence does not conflict in principle with previous findings that, however, pointed to a low ecological significance. This new knowledge on trees' O3 responsiveness beyond the juvenile stage in plantations and forests nevertheless implies limited predictability due to complexity in biotic and abiotic interactions. Unravelling underlying mechanisms is mandatory for assessing O3 risks as an important component of climate change scenarios.
Show more [+] Less [-]Effects of phenanthrene on different levels of biological organization in larvae of the sediment-dwelling invertebrate Chironomus sancticaroli (Diptera: Chironomidae) Full text
2018
Richardi, V.S. | Vicentini, M. | Morais, G.S. | Rebechi, D. | da Silva, T.A. | Fávaro, L.F. | Navarro-Silva, M.A.
The hydrocarbon phenanthrene is an organic compound commonly found in the environment. In aquatic ecosystems, it is highly toxic to organisms, although little is known about its effects on sediment-dwelling organisms. The purpose of this study was to evaluate phenanthrene effects on biochemical, histological, and ontogenetic levels in larvae of the sediment-dwelling invertebrate Chironomus sancticaroli at acute and chronic exposure. Lethal concentrations were estimated and toxicity (acute-96 h and chronic- 8 d) tests were performed at phenanthrene concentrations from 0.12 to 1.2 mg L⁻¹. At acute and chronic exposure, we evaluated acetylcholinesterase (AChE), alpha esterase (EST-α), and beta esterase (EST-β) activities as well as histological alterations. In the assays with chronic exposure, effects on larval development were estimated using antennae length (instar estimative) and body length (growth estimative). The EST-α showed a significantly increased activity after 48 h at acute exposure to high concentrations of phenanthrene, while EST-β activity was increased after 48 and 72 h at acute exposure at higher concentrations and at 0.12 mg L⁻¹ at chronic exposure. At acute exposure, the midgut showed alterations such as brush border disruption, gastric caeca regression, and lumen area reduction; the fat body showed nuclear alteration in the trophocytes, while the Malpighian tubules showed brush border reduction and the salivary glands were subject to cytoplasm vacuolation. At chronic exposure, the same alterations were observed, in addition to vacuolar coalescence in the trophocytes of the fat body. Regarding larval development, a reduction of body length was observed with increasing phenanthrene concentrations. Similarly, molting was delayed; in the control group, all larvae were in the fourth instar, while at higher phenanthrene concentrations, larvae were predominantly in the third instar. Phenanthrene had toxic effects on this chironomid, indicating risks for natural populations.
Show more [+] Less [-]Environmental concentrations of prednisolone alter visually mediated responses during early life stages of zebrafish (Danio rerio) Full text
2016
McNeil, Paul L. | Nebot, Carolina | Cepeda, Alberto | Sloman, Katherine A.
The development of the eye in vertebrates is dependent upon glucocorticoid signalling, however, specific components of the eye are sensitive to synthetic glucocorticoids. The presence of synthetic glucocorticoids within the aquatic environment may therefore have important consequences for fish, which are heavily reliant upon vision for mediating several key behaviours. The potential ethological impact of synthetic glucocorticoid oculotoxicity however has yet to be studied. Physiological and behavioural responses which are dependent upon vision were selected to investigate the possible toxicity of prednisolone, a commonly occurring synthetic glucocorticoid within the environment, during early life stages of zebrafish. Although exposure to prednisolone did not alter the morphology of the external eye, aggregation of melanin within the skin in response to increasing light levels was impeded and embryos exposed to prednisolone (10 μg/l) maintained a darkened phenotype. Exposure to prednisolone also increased the preference of embryos for a dark environment within a light dark box test in a concentration dependent manner. However the ability of embryos to detect motion appeared unaffected by prednisolone. Therefore, while significant effects were detected in several processes mediated by vision, changes occurred in a manner which suggest that vision was in itself unaffected by prednisolone. Neurological and endocrinological changes during early ontogeny are considered as likely candidates for future investigation.
Show more [+] Less [-]Multiple-stressor effects of ocean acidification, warming and predation risk cues on the early ontogeny of a rocky-shore keystone gastropod Full text
2022
Manríquez, Patricio H. | Jara, María Elisa | González, Claudio P. | Jeno, Katherine | Domenici, P. (Paolo) | Watson, Sue-Ann | Duarte, Cristian | Brokordt, Katherina
To understand how climate change stressors might affect marine organisms and support adequate projections it is important to know how multiple stressors may be modulated by the presence of other species. We evaluated the direct effects of ocean warming (OW) and ocean acidification (OA) together with non-consumptive effects (NCEs) of the predatory crab Acanthocyclus hassleri on early ontogeny fitness-related traits of the commercially important rocky-shore keystone gastropod Concholepas concholepas. We measured the response of nine traits to these stressors at either the organismal level (survival, growth, feeding rates, tenacity, metabolic rate, calcification rate) or sub-organismal level (nutritional status, ATP-supplying capacity, stress condition). C. concholepas survival was not affected by any of the stressors. Feeding rates were not affected by OW or OA; however, they were reduced in the presence of crab NCEs compared with control conditions. Horizontal tenacity was affected by the OA × NCEs interaction; in the presence of NCEs, OA reduced tenacity. The routine metabolic rate, measured by oxygen consumption, increased significantly with OW. Nutritional status assessment determined that carbohydrate content was not affected by any of the stressors. However, protein content was affected by the OA × NCEs interaction; in the absence of NCEs, OA reduced protein levels. ATP-supplying capacity, measured by citrate synthase (CS) activity, and cellular stress condition (HSP70 expression) were reduced by OA, with reduction in CS activity found particularly at the high temperature. Our results indicate C. concholepas traits are affected by OA and OW and the effects are modulated by predator risk (NCEs). We conclude that some C. concholepas traits are resilient to climate stressors (survival, growth, horizontal tenacity and nutritional status) but others are affected by OW (metabolic rate), OA (ATP-supplying capacity, stress condition), and NCEs (feeding rate). The results suggest that these negative effects can adversely affect the associated community.
Show more [+] Less [-]Does exposure to environmental 2,4-dichlorophenoxyacetic acid concentrations increase mortality rate in animals? A meta-analytic review Full text
2022
Silva, Ana Paula da | Morais, Elizete Rodrigues | Oliveira, Elton Celton | Ghisi, Nédia de Castilhos
The 2,4-dichlorophenoxyacetic acid (2,4-D) is an auxinic herbicide widely used in agriculture that is effective in controlling weeds. It is directly applied to the soil, to ponds or sprayed onto crops; thus, it can progressively accumulate in environmental compartments and affect non-target organisms. The aim of the present meta-analytic review is to investigate the toxic effects of 2,4-D, based on a compilation of results from different studies, which were synthesized to form a statistically reliable conclusion about the lethal effect of potentially ecological concentrations of 2,4-D in several animal species. The search was carried out in the Web of Science and Scopus databases. After the selection process was over, 87 datasets were generated and analyzed. The overall effect has indicated significant increase in the mortality rate recorded for animals exposed to environmental concentrations of 2,4-D compared to the control in the experiment (unexposed animals). The segregation of animals into taxonomic categories has shown that fish and birds presented higher mortality rates after exposure to the investigated substance. The present meta-analysis indicated larval and adult animals were susceptible among the ontogenetic development stages. Juvenile individuals exposed to different 2,4-D concentrations did not show significant difference in comparison to the control. Organisms exposed to 2,4-D immersion were the most impacted compared to those exposed by oral, spray and contact. Animals subjected to commercial formulation presented higher mortality rate than the analytical standard. Thus, 2,4-D can, in fact, increase mortality rate in animals, but it depends on species sensitivity, life stage and exposure route. This is the first meta-analytical study evaluating the mortality rate after 2,4-D exposure in several animal species.
Show more [+] Less [-]Factors that influence trace element levels in blood and feathers of Pygoscelis penguins from South Shetland Islands, Antarctica Full text
2021
Padilha, J.A. | Carvalho, G.O. | Espejo, W. | Souza, J.S. | Pizzochero, A.C. | Cunha, L.S.T. | Costa, E.S. | Pessôa, A.R.L. | Almeida, A.P. | Torres, J.P.M. | Lepoint, G. | Michel, L.N. | Das, K. | Dorneles, P.R.
Factors that influence trace element levels in blood and feathers of Pygoscelis penguins from South Shetland Islands, Antarctica Full text
2021
Padilha, J.A. | Carvalho, G.O. | Espejo, W. | Souza, J.S. | Pizzochero, A.C. | Cunha, L.S.T. | Costa, E.S. | Pessôa, A.R.L. | Almeida, A.P. | Torres, J.P.M. | Lepoint, G. | Michel, L.N. | Das, K. | Dorneles, P.R.
Contaminant levels are lower in Antarctica than elsewhere in the world because of its low anthropogenic activities. However, the northern region of the Antarctic Peninsula, is close to South America and experiences the greatest anthropogenic pressure in Antarctica. Here, we investigated, in two Antarctic Peninsula islands, intra and interspecific factors that influence the concentrations of 17 trace elements (TEs) in blood and feathers of three penguin species breeding sympatrically in relation to their trophic ecology assessed via a stable isotopic approach (C, N and S). Geographical location, foraging zone (δ¹³C and δ³⁴S) and diet influences the interspecific difference, and sex and maturity stage diet influence the intraspecific difference of Pygoscelis penguins. Penguins from Livingston showed higher values (mean, ng. g⁻¹, dry weight - dw) of Zn (103), Mn (0.3), and Fe (95) than those from King George Island (Zn: 80, Mn: 1.9, and Fe: 11). Gender-related differences were observed, as males showed significantly higher values (mean, ng. g⁻¹, dw) of Rb (3.4) and δ¹⁵N in blood of gentoo, and Ca (1344) in Adélie feathers. Chicks of gentoo and Adélie presented higher Zn, Mg, Ca, and Sr and lower ¹³C values in blood than adults. The highest concentrations (mean, ng. g⁻¹, dw) of Cd (0.2) and Cu (26), and the lowest δ¹⁵N values were found in chinstrap. Geographical, intraspecific (i.e., ontogenetic and gender-related) and interspecific differences in feeding seemed to have influenced TE and stable isotope values in these animals. The TE bioaccumulation by penguins may have also been influenced by natural enrichment in environmental levels of these elements, which seems to be the case for Fe, Zn, and Mn. However, the high level of some of the TEs (Mn, Cd, and Cr) may reflect the increase of local and global human activities.
Show more [+] Less [-]Factors that influence trace element levels in blood and feathers of Pygoscelis penguins from South Shetland Islands, Antarctica Full text
2021
Padilha, J. A. | Carvalho, G. O. | Espejo, W. | Souza, J. S. | Pizzochero, A. C. | Cunha, L. S. T. | Costa, E. S. | Pessoa, A. R. L. | Almeida, A. P. | Torres, J. P. M. | Lepoint, G. | Michel, Loic | Das, K. | Dorneles, P. R.
Contaminant levels are lower in Antarctica than elsewhere in the world because of its low anthropogenic activities. However, the northern region of the Antarctic Peninsula, is close to South America and experiences the greatest anthropogenic pressure in Antarctica. Here, we investigated, in two Antarctic Peninsula islands, intra and interspecific factors that influence the concentrations of 17 trace elements (TEs) in blood and feathers of three penguin species breeding sympatrically in relation to their trophic ecology assessed via a stable isotopic approach (C, N and S). Geographical location, foraging zone (delta C-13 and delta S-34) and diet influences the interspecific difference, and sex and maturity stage diet influence the intraspecific difference of Pygoscelis penguins. Penguins from Livingston showed higher values (mean, ng. g(-1), dry weight - dw) of Zn (103), Mn (0.3), and Fe (95) than those from King George Island (Zn: 80, Mn: 1.9, and Fe: 11). Gender-related differences were observed, as males showed significantly higher values (mean, ng. g(-1), dw) of Rb (3.4) and delta N-15 in blood of gentoo, and Ca (1344) in Adelie feathers. Chicks of gentoo and Adelie presented higher Zn, Mg, Ca, and Sr and lower C-13 values in blood than adults. The highest concentrations (mean, ng. g(-1), dw) of Cd (0.2) and Cu (26), and the lowest delta N-15 values were found in chinstrap. Geographical, intraspecific (i.e., ontogenetic and gender-related) and interspecific differences in feeding seemed to have influenced TE and stable isotope values in these animals. The TE bioaccumulation by penguins may have also been influenced by natural enrichment in environmental levels of these elements, which seems to be the case for Fe, Zn, and Mn. However, the high level of some of the TEs (Mn, Cd, and Cr) may reflect the increase of local and global human activities.
Show more [+] Less [-]Factors that influence trace element levels in blood and feathers of Pygoscelis penguins from South Shetland Islands, Antarctica Full text
2021
Padilha, J. A. | Carvalho, G. O. | Espejo, W. | Souza, J. S. | Pizzochero, A. C. | Cunha, L. S. T. | Costa, E. S. | Pessôa, A. R. L. | Almeida, A. P. | Torres, J. P. M. | Lepoint, Gilles | Michel, Loïc | Das, Krishna | Dorneles, P. R. | MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège | FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
peer reviewed | Contaminant levels are lower in Antarctica than elsewhere in the world because of its low anthropogenic activities. However, the northern region of the Antarctic Peninsula, is close to South America and experiences the greatest anthropogenic pressure in Antarctica. Here, we investigated, in two Antarctic Peninsula islands, intra and interspecific factors that influence the concentrations of 17 trace elements (TEs) in blood and feathers of three penguin species breeding sympatrically in relation to their trophic ecology assessed via a stable isotopic approach (C, N and S). Geographical location, foraging zone (δ13C and δ34S) and diet influences the interspecific difference, and sex and maturity stage diet influence the intraspecific difference of Pygoscelis penguins. Penguins from Livingston showed higher values (mean, ng. g−1, dry weight - dw) of Zn (103), Mn (0.3), and Fe (95) than those from King George Island (Zn: 80, Mn: 1.9, and Fe: 11). Gender-related differences were observed, as males showed significantly higher values (mean, ng. g−1, dw) of Rb (3.4) and δ15N in blood of gentoo, and Ca (1344) in Adélie feathers. Chicks of gentoo and Adélie presented higher Zn, Mg, Ca, and Sr and lower 13C values in blood than adults. The highest concentrations (mean, ng. g−1, dw) of Cd (0.2) and Cu (26), and the lowest δ15N values were found in chinstrap. Geographical, intraspecific (i.e., ontogenetic and gender-related) and interspecific differences in feeding seemed to have influenced TE and stable isotope values in these animals. The TE bioaccumulation by penguins may have also been influenced by natural enrichment in environmental levels of these elements, which seems to be the case for Fe, Zn, and Mn. However, the high level of some of the TEs (Mn, Cd, and Cr) may reflect the increase of local and global human activities.
Show more [+] Less [-]