Refine search
Results 1-10 of 31
Importance of ammonia nitrogen potentially released from sediments to the development of eutrophication in a plateau lake
2022
Ding, Shuai | Dan, Solomon Felix | Liu, Yan | He, Jia | Zhu, Dongdong | Jiao, Lixin
Sedimentary nitrogen (N) in lakes significantly influenced by eutrophication plays a detrimental role on the ecological sustainability of aquatic ecosystems. Here, we conducted a thorough analysis of the importance of N potentially released from sediments during the shift of “grass-algae” ecosystem in plateau lakes. From 1964 to 2013, the average total amount of sedimentary potential mineralizable organic nitrogen (PMON) and exchangeable N in whole Lake Dianchi were 5.50 × 10³ t and 3.44 × 10³ t, respectively. NH₄⁺-N was the main product (>90%) of sedimentary PMON mineralization. The PMON in sediments had great release potential, which tended to regulate the distribution of aquatic plants and phytoplankton in Lake Dianchi and facilitated the replacement of dominant populations. Moreover, NH₄⁺-N produced by sedimentary PMON mineralization and exchangeable NH₄⁺-N have increased the difficulty and complexity of ecological restoration in Lake Dianchi to a certain extent. This study highlights the importance of sedimentary N in lake ecosystem degradation, showing the urgent need to reduce the continuous eutrophication of lakes and restore the water ecology.
Show more [+] Less [-]Investigation of water-soluble organic constituents and their spatio-temporal heterogeneity over the Tibetan Plateau
2022
Niu, Hewen | Lu, Xixi | Zhang, Guotao | Sarangi, Chandan
Investigating the migration and transformation of carbonaceous and nitrogenous matter in the cryosphere areas is crucial for understanding global biogeochemical cycle and earth's climate system. However, water-soluble organic constituents and their transformation in multiple water bodies are barely investigated. Water-soluble organic carbon (WSOC) and organic nitrogen (WSON), and particulate black carbon (PBC) in multiple types of water bodies in eastern Tibetan Plateau (TP) cryosphere for the first time have been systematically investigated. Statistical results exhibited that from south to north and from east to west of this region, WSOC concentrations in alpine river runoff were gradually elevated. WSOC and nitrogenous matter in the alpine river runoff and precipitation in the glacier region presented distinct seasonal variations. WSON was the dominant component (63.4%) of water-soluble total nitrogen in precipitation over high-altitude southeastern TP cryosphere. Water-soluble carbonaceous matter dominated the carbon cycle in the TP cryosphere, but particulate carbonaceous matter in the alpine river runoff had a small fraction of the cryospheric carbon cycle. Analysis of optical properties illustrated that PBC had a much stronger light absorption ability (MAC-PBC: 2.28 ± 0.37 m² g⁻¹) than WSOC in the alpine river runoff (0.41 ± 0.26 m² g⁻¹). Ionic composition was dominated by SO₄²⁻, NO₃⁻, and NH₄⁺ (average: 45.13 ± 3.75%) in the snow of glaciers, implying important contribution of (fossil fuel) combustion sources over this region. The results of this study have essential implications for understanding the carbon and nitrogen cycles in high altitude cryosphere regions of the world. Future work should be performed based on more robust in-situ observations and measurements from multiple environmental medium over the cryosphere areas, to ensure ecological protection and high-quality development of the high mountain Asia.
Show more [+] Less [-]Fate of dissolved inorganic nitrogen in turbulent rivers: The critical role of dissolved oxygen levels
2022
Liu, Ming | He, Yixin | Cao, Li | Zhi, Yue | He, Xianjin | Li, Tao | Wei, Yanyan | Yuan, Xiaobing | Liu, Bingsheng | He, Qiang | Li, Hong | Miao, Xiaojun
Dissolved inorganic nitrogen (DIN) is considered the main factor that induces eutrophication in water, and is readily influenced by hydrodynamic activities. In this study, a 4-year field investigation of nitrogen dynamics in a turbulent river was conducted, and a laboratory study was performed in the approximately homogeneous turbulence simulation system to investigate potential mechanisms involved in DIN transformation under turbulence. The field investigation revealed that, contrary to NO⁻₃ dynamics, the NH⁺₄ concentrations in water were lower in flood seasons than in drought seasons. Further laboratory results demonstrated that limitation of dissolved oxygen (DO) caused inactive nitrification and active denitrification in static river sediment. In contrast, the increased DO levels in turbulent river intensified the mineralization of organic nitrogen in sediment; moreover, ammonification and nitrification were activated, while denitrification was first activated and then depressed. Turbulence therefore decreased NH⁺₄ and NO⁻₂ concentrations, but increased NO⁻₃ and total DIN concentrations in the overlying water, causing the total DIN to increase from 0.4 mg/L to maximum of 1.0 and 1.7 mg/L at low and high turbulence, respectively. The DIN was maintained at 0.7 and 1.0 mg/L after the 30-day incubation under low and high turbulence intensities (ε) of 3.4 × 10⁻⁴ and 7.4 × 10⁻² m²/s³, respectively. These results highlight the critical role of DO in DIN budgets under hydrodynamic turbulence, and provide new insights into the DIN transport and transformation mechanisms in turbulent rivers.
Show more [+] Less [-]Transport process and source contribution of nitrogen in stormwater runoff from urban catchments
2021
Ma, Yukun | Wang, Shihui | Zhang, Xiaoyue | Shen, Zhenyao
Nitrogen in urban stormwater has been widely studied, and effective management of nitrogen pollution is critical for improving urban stormwater and receiving water quality. This requires an in-depth understanding of the transport process and source contribution to both dissolved and particulate nitrogen in stormwater from urban catchments. In this study, 123 stormwater runoff samples were collected from an urban catchment during different rainfall events. Dissolved and particulate nitrogen concentrations in roof runoff, road runoff, and sewer flow were analyzed. The concentration of dissolved nitrogen was higher in roof runoff than in road runoff and sewer flow. However, the concentration of particulate nitrogen was lower in roof runoff than in road runoff and sewer flow. Isotopic analysis and Bayesian mixing models showed that road runoff was the largest source contributor of both nitrate and particulate organic nitrogen (PON) in sewer flow discharged from the study catchment. In addition, road runoff contributed the majority of PON associated with coarse particles (>105 μm), whereas PON associated with fine particles (<105 μm) was primarily washed-off of sewer sediments. The results provided several suggestions for the management of nitrogen pollution in urban catchments. This study could help to fully understand the transport and sources of nitrogen pollution in urban stormwater and provide recommendations to the government for implementing appropriate stormwater management strategies to minimize stormwater pollution.
Show more [+] Less [-]Sediment nitrogen contents controlled by microbial community in a eutrophic tributary in Three Gorges Reservoir
2022
Lv, Kun | Guo, Xiaojuan | Wang, Congfeng | Su, Qingqing | Liu, Defu | Xiao, Shangbin | Yang, Zhengjian
Nitrogen pollution caused serious environmental problems in reservoir ecosystems. Reducing nitrogen pollution by enhancing nitrogen removal in river sediments deserved intensive research. Distributions of nitrogen contents in sediment-water interface were characterized along the Xiangxi bay (XXB), a eutrophic tributary in Three Gorges Reservoir, China. More than 47% of total Kjeldahl nitrogen (TKN) and 67% of total organic nitrogen (TON) were degraded during burial. Higher TN, TON and NH₄⁺ consuming at downstream sites indicated stronger nitrogen mineralization and release due to higher turbulence of the overlying density currents. Nitrifying bacteria, denitrifying bacteria, anaerobic ammonium oxidizing (anammox) bacteria and nitrite/nitrate-dependent anaerobic methane oxidation (N-DAMO) bacteria were detected in nitrate-ammonium transition zone. Nitrogen contents transitions were responded to microbial stakeholders indicated microbially mediated nitrogen cycling in sediments. The dissolved oxygen and nitrate availabilities were the key limits of denitrification and associated reactions. These results suggested microbial mediated nitrogen cycling processes in sediments were critical for nitrogen removal in aquatic ecosystems, and replenishing dissolved oxygen and nitrate was expected to enhance sediment denitrification and strengthen potential environmental self-purification.
Show more [+] Less [-]Budget of riverine nitrogen over the East China Sea shelf
2021
Zhang, Jing | Guo, Xinyu | Zhao, Liang
Riverine nitrogen loading to the continental shelf sea is important for terrestrial–marine linkage and global nitrogen cycling and leads to serious marine environmental problems. The budget and cycle of riverine nitrogen over the continental shelf in the East China Sea (ECS) are unknown. Using the tracking technique within a physical–biological coupled model, we quantified the nitrogen budgets of riverine dissolved inorganic nitrogen (DIN) and particulate organic nitrogen (PON) over seasonal to annual scales in the ECS, especially from the Changjiang River, which plays a dominant role in riverine nitrogen input. The horizontal distributions of the Changjiang DIN and PON generally followed the Changjiang diluted water and coastal currents and were affected by stratification in the vertical direction. Their inventory variations were dominated by biological fluxes and modulated by physical ones, and changed most dramatically in the inner shelf among three subregions. Less than half of DIN were converted to PON with most of the rest leaving the ECS through lateral transport pathways, among which the flux through the Tsushima Strait was dominant. With the increasing loading of the Changjiang DIN flux from the 1980s–2010s, lateral transports rather than PON production increased due to limited primary production. Approximately 60 % of the produced PON exported to the sediment and 34 % went to the Tsushima Strait. According to the export production, the DIN from the Changjiang River contributed 12–42 % to the ECS carbon sequestration.
Show more [+] Less [-]Ammonium detoxification mechanism of ammonium-tolerant duckweed (Landoltia punctata) revealed by carbon and nitrogen metabolism under ammonium stress
2021
Tian, Xueping | Fang, Yang | Jin, Elaine | Yi, Zhuolin | Li, Jinmeng | Du, Anping | He, Kaize | Huang, Yuhong | Zhao, Hai
In this work, the ammonium-tolerant duckweed Landoltia punctata 0202 was used to study the effect of ammonium stress on carbon and nitrogen metabolism and elucidate the detoxification mechanism. The growth status, protein and starch content, and activity of nitrogen assimilation enzymes were determined, and the transcriptional levels of genes involved in ion transport and carbon and nitrogen metabolism were investigated. Under high ammonium stress, the duckweed growth was inhibited, especially when ammonium was the sole nitrogen source. Ammonium might mainly enter cells via low-affinity transporters. The stimulation of potassium transport genes suggested sufficient potassium acquisition, precluding cation deficiency. In addition, the up-regulation of ammonium assimilation and transamination indicated that excess ammonium could be incorporated into organic nitrogen. Furthermore, the starch content increased from 3.97% to 16.43% and 26.02% in the mixed-nitrogen and ammonium-nitrogen groups, respectively. And the up-regulated starch synthesis, degradation, and glycolysis processes indicated that the accumulated starch could provide sufficient carbon skeletons for excess ammonium assimilation. The findings of this study illustrated that the coordination of carbon and nitrogen metabolism played a vital role in the ammonium detoxification mechanism of duckweeds.
Show more [+] Less [-]Wastewater treatment plant upgrade induces the receiving river retaining bioavailable nitrogen sources
2020
Wang, Qiaojuan | Liang, Jinsong | Zhao, Chen | Bai, Yaohui | Liu, Ruiping | Liu, Huijuan | Qu, Jiuhui
Currently, wastewater treatment plant (WWTP) upgrades have been implemented in various countries to improve the water quality of the receiving ecosystems and protect aquatic species from potential deleterious effects. The impact of WWTP upgrades on biological communities and functions in receiving waters is a fundamental issue that remains largely unaddressed, especially for microbial communities. Here, we selected two wastewater-dominant rivers in Beijing (China) as study sites, i.e., one river receiving water from an upgraded WWTP to explore the impacts of upgrade on aquatic ecosystems and another river receiving water from a previously upgraded WWTP as a reference. After a five-year investigation, we found that WWTP upgrade significantly decreased total organic nitrogen (N) in the receiving river. As a biological response, N-metabolism-related bacterioplankton are accordingly altered in composition and tend to intensively interact according to the network analysis. Metagenomic analysis based on the N-cycling genes and metagenomic-assembled genomes revealed that WWTP upgrade decreased the abundance of nitrifying bacteria but increased that of denitrifying and dissimilatory nitrate reduction to ammonium (DNRA) bacteria in the receiving river, according to their marker gene abundances. After calculation of the ratios between DNRA and denitrifying bacteria and quantification of genes/bacteria related to ammonium cycling, we deduced the changes in N-metabolism-related bacteria are likely an attempt to provide enough bioavailable N for plankton growth as conservation of ammonium was enhanced in receiving river after WWTP upgrade.
Show more [+] Less [-]Nutrients release and greenhouse gas emission during decomposition of Myriophyllum aquaticum in a sediment-water system
2020
Luo, Pei | Tong, Xiong | Liu, Feng | Huang, Min | Xu, Juan | Xiao, Runlin | Wu, Jinshui
Aquatic macrophytes play a significant role in nutrients removal in constructed wetlands, yet nutrients could be re-released due to plant debris decomposition. In this study, Myriophyllum aquaticum was used as a model plant debris and three debris biomass levels of 3 g, 9 g dry biomass, and 20 g fresh biomass (D3, D9, and F20, respectively) were used to simulate 120-d plant debris decomposition in a sediment-water system. The biomass first-order decomposition rate constants of D3, D9, and F20 treatments were 0.0058, 0.0117, and 0.0201 d⁻¹, respectively with no significant difference of decomposition rate among three mass groups (p > 0.05). Plant debris decomposition decreased nitrate and total nitrogen concentrations but increased ammonium, organic nitrogen, and dissolved organic carbon (DOC) concentrations in overlying water. The parallel factor analysis confirms that three components of DOC in overlying water changed over decomposition time. Emission fluxes of methane and nitrous oxide in the plant debris treatments were several to thousands of times higher than the control group within the initial 0–45 d, which was mainly attributed to DOC released from the plant debris. Plant debris decomposition can affect the gas emission fluxes for relatively shorter time (30–60 d) than water quality (>120 d). The 16S rRNA, nirK, nirS and hazA gene abundance increased in the early stage for plant debris treatments, and then decreased to the end of 120-d incubation time while ammonia monooxygenase α-subunit A gene abundance of ammonia-oxidizing archaea and bacteria had no large variations during the entire decay time compared with no plant debris treatment. The results demonstrate that decomposition of M. aquaticum debris could affect greenhouse gas emission fluxes and microbial gene abundance in the sediment-water system besides overlying water quality.
Show more [+] Less [-]Characterizations of microbial diversity and machine oil degrading microbes in machine oil contaminated soil
2019
Wang, Mengjiao | Deng, Baiwan | Fu, Xun | Sun, Haiyan | Xu, Zhimin
Microbial diversity in machine oil contaminated soil was determined by high-throughput amplicon sequencing technology. The diversity of culturable microbes in the contaminated soil was further characterized using polymerase chain reaction method. Proteobacteria and Bacteroidetes were the most dominant phyla and occupied 52.73 and 16.77%, respectively, while the most abundant genera were Methylotenera (21.62%) and Flavobacterium (3.06%) in the soil. In the culturable microbes, the major phyla were Firmicutes (46.15%) and Proteobacteria (37.36%) and the most abundant genera were Bacillus (42.86%) and Aeromonas (34.07%). Four isolated microbes with high machine oil degradation efficiency were selected to evaluate their characteristics on the oil degradation. All of them reached their highest oil degradation rate after 7 days of incubation. Most of them significantly increased their oil degradation rate by additional carbon or organic nitrogen source in the incubation medium. The oil degradation rate by combination of the four microbes at the same level was also higher than the rate from each individual microbe. The protocol and findings of this study are very useful for developing micro-bioremediation method to eliminate machine oil contaminants from soil.
Show more [+] Less [-]