Refine search
Results 1-10 of 242
Studies on the solid waste extracts from a chloro alkali factory: I. Morphological behaviour of rice seedlings grown in the waste extract.
1984
Misra S.R. | Misra B.N.
β-Glucosidases as dominant dose-dependent regulators of Oryza sativa L. in response to typical organic pollutant exposures
2022
Shao, Zexi | Liu, Na | Wang, Wei | Zhu, Lizhong
Understanding the metabolic defense and compensation to maintain homeostasis is crucial for assessing the potential health risk of organic pollutants in crops. Currently, limited understanding is available regarding the targeted metabolic pathways and response mechanism under contaminant stress. This study showed that ciprofloxacin (CIP) at the environmental concentrations (1, 5, 25, 50 mg/L) did not significantly inhibit growth or cause severe oxidative damage to rice (Oryza sativa L.). Instead, the increment in CIP concentration induced a series of sequential metabolic disorders, which were characterized predominantly by primary and secondary metabolic disturbances, including phenylpropanoid biosynthesis, the carbohydrate, lipid and amino acid metabolism. After CIP in vivo exceeded a certain threshold level (>0.29 mg/g dry weight), β-glucosidases (BGLUs) mediated the transition from the activation of the genes related to phenylpropanoid biosynthesis to the inhibition of the genes related to carbohydrate metabolism in rice. In particular, starch and sucrose metabolism showed the most profound perturbation stressed by environmental concentrations of CIP (5 mg/L) and other tested organic pollutants (10 μg/L of tricyclazole, thiamethoxam, polybrominated diphenyl ethers, and polychlorinated biphenyls). Besides, the key genes encoding endoglucanase and BGLU were significantly downregulated (|log₂FC| > 3.0) under 100 μg/L of other tested organic pollutants, supporting the transition from the activation of secondary defense metabolism to the disruption of primary energy metabolism. Thus, in addition to bioaccumulation, changes in BGLU activity and starch and sucrose metabolism can reflect the potential adverse effects of pollutants on rice. This study explained the stepwise metabolic and transcriptional responses of rice to organic pollutants, which provided a new reference for the comprehensive evaluation of their environmental risks.
Show more [+] Less [-]Fe3O4-urea nanocomposites as a novel nitrogen fertilizer for improving nutrient utilization efficiency and reducing environmental pollution
2022
Guha, Titir | Gopal, Geetha | Mukherjee, Amitava | Kundu, Rita
Almost 81% of nitrogen fertilizers are applied in form of urea but most of it is lost due to volatilization and leaching leading to environmental pollution. In this regard, slow-release nano fertilizers can be an effective solution. Here, we have synthesized different Fe₃O₄-urea nanocomposites with Fe₃O₄ NPs: urea ratio (1:1, 1:2, 1:3) ie. NC-1, 2, and 3 respectively, and checked their efficacy for growth and yield enhancement. Oryza sativa L. cv. Swarna seedlings were treated with different NCs for 14 days in hydroponic conditions and significant up-regulation of photosynthetic efficiency and nitrogen metabolism were observed due to increased availability of nitrogen and iron. The discriminant functional analysis confirmed that the NC3 treatment yielded the best results so further gene expression studies were performed for NC-3 treated seedlings. Significant changes in expression profiles of ammonia and nitrate transporters indicated that NC-3 treatment enhanced nitrogen utilization efficiency (NUE) due to sustained slow release of urea. From pot experiments, we found significant enhancement of growth, grain nutrient content, and NUE in NC supplemented sets. 1.45 fold increase in crop yield was achieved when 50% N was supplemented in form of NC-3 and the rest in form of ammonium nitrate. NC supplementation can also play a vital role in minimizing the use of bulk N fertilizers because, when 75% of the recommended N dose was supplied in form of NC-3, 1.18 fold yield enhancement was found. Thus our results highlight that, slow-release NC-3 can play a major role in increasing the NUE of rice.
Show more [+] Less [-]Microplastics in plant-soil ecosystems: A meta-analysis
2022
Zhang, Yanyan | Cai, Chen | Gu, Yunfu | Shi, Yuanshuai | Gao, Xuesong
Microplastic pollution is a recognized hazard in aquatic systems, but in the past decade has emerged as a pollutant of interest in terrestrial ecosystems. This paper is the first formal meta-analysis to examine the phytotoxic effects of microplastics and their impact on soil functions in the plant-soil system. Our specific aims were to: 1) determine how the type and size of microplastics affect plant and soil health, 2) identify which agricultural plants are more sensitive to microplastics, and 3) investigate how the frequency and amount of microplastic pollution affect soil functions. Plant morphology, antioxidant production and photosynthesis capacity were impacted by the composition of polymers in microplastics, and the responses could be negative, positive or neutral depending on the polymer type. Phytotoxicity testing revealed that maize (Zea mays) was more sensitive than rice (Oryza sativa) and wheat (Triticum aestivum) within the Poaceae family, while wheat and lettuce (Lactuca sativa) were less sensitive to microplastics exposure. Microplastics-impacted soils tend to be more porous and retain more water, but this did not improve soil stability or increase soil microbial diversity, suggesting that microplastics occupied physical space but were not integrated into the soil biophysical matrix. The meta-data revealed that microplastics enhanced soil evapotranspiration, organic carbon, soil porosity, CO₂ flux, water saturation, nitrogen content and soil microbial biomass, but decreased soil N₂O flux, water stable aggregates, water use efficiency, soil bulk density and soil microbial diversity.
Show more [+] Less [-]Nitrogen balance acts an indicator for estimating thresholds of nitrogen input in rice paddies of China
2021
Ding, Wencheng | Xu, Xinpeng | Zhang, Jiajia | Huang, Shaohui | He, Ping | Zhou, Wei
Decision-making related to nitrogen (N) fertilization is a crucial step in agronomic practices because of its direct interactions with agronomic productivity and environmental risk. Here, we hypothesized that soil apparent N balance could be used as an indicator to determine the thresholds of N input through analyzing the responses of the yield and N loss to N balance. Based on the observations from 951 field experiments conducted in rice (Oryza sativa L.) cropping systems of China, we established the relationships between N balance and ammonia (NH₃) volatilization, yield increase ratio, and N application rate, respectively. Dramatical increase of NH₃ volatilizations and stagnant increase of the rice yields were observed when the N surplus exceeded certain levels. Using a piecewise regression method, the seasonal upper limits of N surplus were determined as 44.3 and 90.9 kg N ha⁻¹ under straw-return and straw-removal scenarios, respectively, derived from the responses of NH₃ volatilization, and were determined as 53.0–74.9 and 97.9–112.0 kg N ha⁻¹ under straw-return and straw-removal scenarios, respectively, derived from the maximum-yield consideration. Based on the upper limits of N surplus, the thresholds of N application rate suggested to be applied in single, middle-MLYR, middle-SW, early, and late rice types ranged 179.0–214.9 kg N ha⁻¹ in order to restrict the NH₃ volatilization, and ranged 193.3–249.8 kg N ha⁻¹ in order to achieve the maximum yields. If rice straw was returned to fields, on average, the thresholds of N application rate could be theoretically decreased by 17.5 kg N ha⁻¹. This study provides a robust reference for restricting the N surplus and the synthetic fertilizer N input in rice fields, which will guide yield goals and environmental protection.
Show more [+] Less [-]Comparative efficacy of raw and HNO3-modified biochar derived from rice straw on vanadium transformation and its uptake by rice (Oryza sativa L.): Insights from photosynthesis, antioxidative response, and gene-expression profile
2021
Mehmood, Sajid | Ahmed, Waqas | Rizwan, Muhammad | Imatiāza, Muhammada | Mohamed Ali Elnahal, Ahmed Said | Ditta, Allah | Irshad, Sana | Ikram, Muhammad | Li, Weidong
Low concentrations of vanadium (V) are essential for various plant species but it becomes toxic to plants, animals, and humans at high levels. A significant amount of V is currently being emitted into the atmosphere due to intensified industrial processing. Therefore, this study aimed at evaluating the effect of raw (BC) and HNO₃-modified biochar (OBC) derived from rice straw on growth, photosynthetic assimilation, relative chlorophyll content, SPAD index, ion leakage, enzyme activities, hydrogen peroxide (H₂O₂), bioavailability and V uptake by rice in a laboratory-scale experiment. Characterization of OBC and BC by FTIR (Fourier transform infrared spectroscopy), SEM (scan electron microscopy), BET (Brunauer–Emmett–Teller), elemental analysis, and z-potential revealed a substantial difference between both of them. The V-stress significantly reduced the rice plant growth, biomass yield, chlorophyll parameters, root length and surface area. Under V-stress conditions, root accumulated more V than shoots and OBC significantly improved the above-mentioned parameters, while, decreasing hydrogen peroxide (H₂O₂) and malondialdehyde (MDA) levels in plants. The antioxidant function and gene expression levels induced by V-stress and OBC application further increased the expression profile of three genes (SOD, POD, and CAT) encoding antioxidant enzymes and one metal-tolerant conferring gene (OsFSD1). In summary, these results demonstrated the critical role of OBC in mitigating the detrimental effects of high V-stress on rice growth and enhancing plant defence against V-stress.
Show more [+] Less [-]Influence of activated biochar pellet fertilizer application on greenhouse gas emissions and carbon sequestration in rice (Oryza sativa L.) production
2021
Shin, JoungDu | Park, DoGyun | Hong, SeungGil | Jeong, Changyoon | Kim, Hyunook | Chung, W. (Woojin)
Supplemental activated biochar pellet fertilizers (ABPFs) were evaluated as a method to sequester carbon and reduce greenhouse gas (GHG) emissions, and improve rice production. The evaluated treatments were a control (standard cultivation method, no additives applied), activated rice hull biochar pellets with 40% of N (ARHBP-40%), and activated palm biochar pellets with 40% of N (APBP-40%). The N supplied by the ARHBP-40% and APBP-40% treatments reduced the need for supplemental inorganic nitrogen (N) fertilizer by 60 percent. The ARHBP-40% treatment sequestered as much as 1.23 tonne ha⁻¹ compared to 0.89 tonne ha⁻¹ in the control during the rice-growing season. In terms of greenhouse gas (GHG) emissions, CH₄ emissions were not significantly different (p > 0.05) between the control and the ARHBP-40%, while the lowest N₂O emissions (0.002 kg ha⁻¹) were observed in the ARHBP-40% during the crop season. Additionally, GHG (CO₂-equiv.) emissions from the ARHBP-40% application were reduced by 10 kg ha⁻¹ compared to the control. Plant height in the control was relatively high compared to others, but grain yield was not significantly different among the treatments. The application of the ARHBP-40% can mitigate greenhouse gas emissions and enhance carbon sequestration in crop fields, and ABPFs can increase N use efficiency and contribute to sustainable agriculture.
Show more [+] Less [-]Abscisic acid priming regulates arsenite toxicity in two contrasting rice (Oryza sativa L.) genotypes through differential functioning of sub1A quantitative trait loci
2021
Saha, Indraneel | Hasanuzzaman, Mirza | Adak, Malay Kumar
Arsenite [As(III)] toxicity causes impeded growth, inadequate productivity of plants and toxicity through the food chain. Using various chemical residues for priming is one of the approaches in conferring arsenic tolerance in crops. We investigated the mechanism of abscisic acid (ABA)-induced As(III) tolerance in rice genotypes (cv. Swarna and Swarna Sub1) pretreated with 10 μM of ABA for 24 h and transferred into 0, 25 and 50 μM arsenic for 10 days. Plants showed a dose-dependent bioaccumulation of As(III), oxidative stress indicators like superoxide, hydrogen peroxide, thiobarbituric acid reactive substances and the activity of lipoxygenase. As(III) had disrupted cellular redox that reflecting growth indices like net assimilation rate, relative growth rate, specific leaf weight, leaf mass ratio, relative water content, proline, delta-1-pyrroline-5-carboxylate synthetase and electrolyte leakage. ABA priming was more protective in cv. Swarna Sub1 than Swarna for retrieval of total glutathione pool, non-protein thiols, cysteine, phytochelatin and glutathione reductase. Phosphate metabolisms were significantly curtailed irrespective of genotypes where ABA had moderated phosphate uptake and its metabolizing enzymes like acid phosphatase, alkaline phosphatase and H⁺/ATPase. Rice seedlings had regulated antioxidative potential with the varied polymorphic expression of those enzymes markedly with antioxidative enzymes. The results have given the possible cellular and physiological traits those may interact with ABA priming in the establishment of plant tolerance with As(III) over accumulation and, thereby, its amelioration for oxidative damages. Finally, cv. Swarna Sub1 was identified as a rice genotype as a candidate for breeding program for sustainability against As(III) stress with cellular and physiological traits serving better for selection pressure.
Show more [+] Less [-]Rice-derived facultative endophytic Serratia liquefaciens F2 decreases rice grain arsenic accumulation in arsenic-polluted soil
2020
Cheng, Cheng | Nie, Zong-Wei | He, Lin-Yan | Sheng, Xia-Fang
In this study, an arsenic (As)-resistant facultative endophytic bacterial strain, F2, was isolated from the root of Oryza sativa Longliangyou Huazhan and identified as Serratia liquefaciens according to 16S rRNA gene sequence analysis. Strain F2 was characterized for i) its impacts on As immobilization in solution and rice tissue As accumulation, and ii) the mechanisms involved for different levels of As-pollution in soils. In strain F2-inoculated culture medium, the concentration of As decreased, while the pH, cell growth, and cell-immobilized As significantly increased over time. Grain As content reduced by between 23 and 36% in strain F2-inoculated rice plants in comparison to the control. Available As content decreased by between 28 and 52%, but unavailable As content increased by between 27 and 46% in the strain F2-inoculated soil when compared with the controls. Moreover, the strain decreased the As translocation factor by between 34 and 46%, but increased the As concentration by between 24 and 70% in Fe plaque on the rice root surfaces in comparison to the controls. These results suggested that strain F2 decreased the rice grain As uptake by i) decreasing available As in soil, ii) increasing rice root surface As adsorption, and iii) decreasing As translocation from the roots to grains. Our findings may provide a new rice-derived facultative endophytic bacteria-assisted approach for decreasing the As uptake to rice grains in As-polluted soils.
Show more [+] Less [-]The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics
2020
Qi, Xiaoli | Tam, Nora Fung-yee | Li, Wai Chin | Ye, Zhihong
The radial translocation of cadmium (Cd) from the root to the shoot is one of the major processes affecting Cd accumulation in rice (Oryza sativa L.) grains, but few studies have focused on Cd apoplastic transport in rice. The aim of this study was to determine how apoplastic barriers affect Cd translocation via the apoplastic pathway, Cd accumulation levels in upper parts (shoot and grains) of rice cultivars, and the possible mechanism involved. Hydroponic and soil pot trials were conducted to study the development and chemical constituents of apoplastic barriers and their permeability to bypass flow, and to determine Cd localization in the roots of rice cultivars with different Cd-accumulating characteristics. The Cd accumulation in upper parts was positively correlated with bypass flow in the root and the apparent Cd concentration in the xylem, indicating that the apoplastic pathway may play an important role in Cd root-shoot translocation in rice. Apoplastic barriers were deposited closer to the root tip and were thicker in low Cd-accumulating cultivars than in high Cd-accumulating cultivars. The amounts and rates of increase in lignin and suberin were significantly higher in ZD14 (a low Cd-accumulating cultivar) than in FYXZ (a high Cd-accumulating cultivar) under Cd stress, indicating that stronger barriers were induced by Cd in ZD14. The stronger and earlier formation of barriers in the low Cd-accumulating cultivar decreased bypass flow more efficiently, so that more Cd was retained in the root during apoplastic translocation. This was confirmed by localization analyses of Cd in root transverse sections. These results suggest that apoplastic barriers reduce Cd root-to-shoot translocation via the apoplastic pathway, leading to lower Cd accumulation in the upper parts of rice plants. Bypass flow may have the potential to be used as a rapid screening indicator for low Cd-accumulating rice cultivars.
Show more [+] Less [-]