Refine search
Results 1-10 of 33
Lead, mercury, and selenium alter physiological functions in wild caimans (Caiman crocodilus) Full text
2021
Lemaire, Jérémy | Bustamante, Paco | Mangione, R. | Marquis, O. | Churlaud, C. | Brault-Favrou, Maud | Parenteau, Charline | Brischoux, Francois | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | La Rochelle Université (ULR) | Division of Behavioural Ecology, Institute of Ecology and Evolution [Hinterkappelen, Switzerland] ; Universität Bern = University of Bern = Université de Berne (UNIBE) | Sorbonne Université (SU)
Lead, mercury, and selenium alter physiological functions in wild caimans (Caiman crocodilus) Full text
2021
Lemaire, Jérémy | Bustamante, Paco | Mangione, R. | Marquis, O. | Churlaud, C. | Brault-Favrou, Maud | Parenteau, Charline | Brischoux, Francois | Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC) ; La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | LIttoral ENvironnement et Sociétés (LIENSs) ; Institut national des sciences de l'Univers (INSU - CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS) | La Rochelle Université (ULR) | Division of Behavioural Ecology, Institute of Ecology and Evolution [Hinterkappelen, Switzerland] ; Universität Bern = University of Bern = Université de Berne (UNIBE) | Sorbonne Université (SU)
International audience | Environmental contaminants affect ecosystems worldwide and have deleterious effects on biota. Non-essentialmercury (Hg) and lead (Pb) concentrations are well documented in some taxa and are described to cause multipledetrimental effects on human and wildlife. Additionally, essential selenium (Se) is known to be toxic at highconcentrations but, at lower concentrations, Se can protect organisms against Hg toxicity. Crocodilians areknown to bioaccumulate contaminants. However, the effects of these contaminants on physiological processesremain poorly studied. In the present study, we quantified Hg, Pb and Se concentrations in spectacled caimans(Caiman crocodilus) and investigated the effects of these contaminants on several physiological processes linkedto osmoregulatory, hepatic, endocrine and renal functions measured through blood parameters in 23 individuals.Mercury was related to disruption of osmoregulation (sodium levels), hepatic function (alkaline phosphataselevels) and endocrine processes (corticosterone levels). Lead was related to disruption of hepatic functions(glucose and alanine aminotransferase levels). Selenium was not related to any parameters, but the Se:Hg molarratio was positively related to the Na+ and corticosterone concentrations, suggesting a potential protective effectagainst Hg toxicity. Overall, our results suggest that Hg and Pb alter physiological mechanisms in wild caimansand highlight the need to thoroughly investigate the consequences of trace element contamination incrocodilians.
Show more [+] Less [-]Lead, mercury, and selenium alter physiological functions in wild caimans (Caiman crocodilus) Full text
2021
Lemaire, Jérémy | Bustamante, Paco | Mangione, Rosanna | Marquis, Olivier | Churlaud, Carine | Brault-Favrou, Maud | Parenteau, Charline | Brischoux, François
Environmental contaminants affect ecosystems worldwide and have deleterious effects on biota. Non-essential mercury (Hg) and lead (Pb) concentrations are well documented in some taxa and are described to cause multiple detrimental effects on human and wildlife. Additionally, essential selenium (Se) is known to be toxic at high concentrations but, at lower concentrations, Se can protect organisms against Hg toxicity. Crocodilians are known to bioaccumulate contaminants. However, the effects of these contaminants on physiological processes remain poorly studied. In the present study, we quantified Hg, Pb and Se concentrations in spectacled caimans (Caiman crocodilus) and investigated the effects of these contaminants on several physiological processes linked to osmoregulatory, hepatic, endocrine and renal functions measured through blood parameters in 23 individuals. Mercury was related to disruption of osmoregulation (sodium levels), hepatic function (alkaline phosphatase levels) and endocrine processes (corticosterone levels). Lead was related to disruption of hepatic functions (glucose and alanine aminotransferase levels). Selenium was not related to any parameters, but the Se:Hg molar ratio was positively related to the Na⁺ and corticosterone concentrations, suggesting a potential protective effect against Hg toxicity. Overall, our results suggest that Hg and Pb alter physiological mechanisms in wild caimans and highlight the need to thoroughly investigate the consequences of trace element contamination in crocodilians.
Show more [+] Less [-]Experimental assessment of salinization effects on freshwater zooplankton communities and their trophic interactions under eutrophic conditions Full text
2022
Ersoy, Zeynep | Abril, Meritxell | Cañedo-Argüelles, Miguel | Espinosa, Carmen Gertrudis | Vendrell-Puigmitja, Lidia | Proia, Lorenzo
Experimental assessment of salinization effects on freshwater zooplankton communities and their trophic interactions under eutrophic conditions Full text
2022
Ersoy, Zeynep | Abril, Meritxell | Cañedo-Argüelles, Miguel | Espinosa, Carmen Gertrudis | Vendrell-Puigmitja, Lidia | Proia, Lorenzo
Freshwater ecosystems are becoming saltier due to human activities. The effects of increased salinity can lead to cascading trophic interactions, affecting ecosystem functioning and energy transfer, through changes in community and size structure. These effects can be modulated by other environmental factors, such as nutrients. For example, communities developed under eutrophic conditions could be less sensitive to salinization due to cross-tolerance mechanisms. In this study, we used a mesocosm approach to assess the effects of a salinization gradient on the zooplankton community composition and size structure under eutrophic conditions and the cascading effects on algal communities. Our results showed that zooplankton biomass, size diversity and mean body size decreased with increased chloride concentration induced by salt addition. This change in the zooplankton community did not have cascading effects on phytoplankton. The phytoplankton biomass decreased after the chloride concentration threshold of 500 mg L⁻¹ was reached, most likely due to direct toxic effects on the osmotic regulation and nutrient uptake processes of certain algae rather than as a response to community turnover or top-down control. Our study can help to put in place mitigation strategies for salinization and eutrophication, which often co-occur in freshwater ecosystems.
Show more [+] Less [-]Experimental assessment of salinization effects on freshwater zooplankton communities and their trophic interactions under eutrophic conditions Full text
2022
Ersoy, Zeynep | Abril, Meritxell | Cañedo-Argüelles, Miguel | Espinosa, Carmen | Vendrell-Puigmitja, Lidia | Proia, Lorenzo | European Commission | 0000-0003-2344-9874 | 0000-0003-3864-7451 | 0000-0002-4599-3048 | 0000-0001-7447-8240 | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Freshwater ecosystems are becoming saltier due to human activities. The effects of increased salinity can lead to cascading trophic interactions, affecting ecosystem functioning and energy transfer, through changes in community and size structure. These effects can be modulated by other environmental factors, such as nutrients. For example, communities developed under eutrophic conditions could be less sensitive to salinization due to cross-tolerance mechanisms. In this study, we used a mesocosm approach to assess the effects of a salinization gradient on the zooplankton community composition and size structure under eutrophic conditions and the cascading effects on algal communities. Our results showed that zooplankton biomass, size diversity and mean body size decreased with increased chloride concentration induced by salt addition. This change in the zooplankton community did not have cascading effects on phytoplankton. The phytoplankton biomass decreased after the chloride concentration threshold of 500 mg L-1 was reached, most likely due to direct toxic effects on the osmotic regulation and nutrient uptake processes of certain algae rather than as a response to community turnover or top-down control. Our study can help to put in place mitigation strategies for salinization and eutrophication, which often co-occur in freshwater ecosystems. | This study is part of the Global Lakes Ecological Observatory Network (GLEON), Global Salt Initiative. We thank FEHM and CT-BETA for allowing us to use their research facilities. LP has received funding from the Beatriu de Pinós Postdoctoral Fellowships Programme, funded by the Secretary of Universities and Research (Government of Catalonia) and by the Horizon 2020 Programme of Research and Innovation of the European Union under the Marie Skłodowska-Curie Grant Agreement No. 801370 and by a Ramón y Cajal contract funded by the Spanish Ministry of Science and Innovation (RYC 2020-029829-I). MCA was supported by the Serra-Hunter programme funded by the Generalitat of Catalunya and by a Ramón y Cajal contract funded by the Spanish Ministry of Science and Innovation (RYC 2020-029829-I). We also thank three anonymous reviewers for their constructive comments and suggestions | Peer reviewed
Show more [+] Less [-]Physiological plasticity and acclimatory responses to salinity stress are ion-specific in the mayfly, Neocloeon triangulifer Full text
2021
Orr, Sarah E. | Negrão Watanabe, Tatiane Terumi | Buchwalter, David B.
Freshwater salinization is a rapidly emerging ecological issue and is correlated with significant declines in aquatic biodiversity. It remains unclear how changing salinity regimes affect the physiology of sensitive aquatic insects. We used the parthenogenetic mayfly, Neocloeon triangulifer, to ask how ionic exposure history alters physiological processes and responses to subsequent major ion exposures. Using radiotracers (²²Na, ³⁵SO₄, and ⁴⁵Ca), we observed that mayflies chronically reared in elevated sodium or sulfate (157 mg L⁻¹ Na or 667 mg L⁻¹ SO₄) had 2-fold (p < 0.0001) and 8-fold (p < 0.0001) lower ion uptake rates than mayflies reared in dilute control water (16 mg L⁻¹ Na and 23 mg L⁻¹ SO₄) and subsequently transferred to elevated salinities, respectively. These acclimatory ion transport changes provided protection in 96-h toxicity bioassays for sodium, but not sulfate. Interestingly, calcium uptake was uniformly much lower and minimally influenced by exposure history, but was poorly tolerated in the toxicity bioassays. With qRT-PCR, we observed that the expression of many ion transporter genes in mayflies was influenced by elevated salinity in an ion-specific manner (general upregulation in response to sulfate, downregulation in response to calcium). Elevated sodium exposure had minimal influence on the same genes. Finally, we provide novel light microscopic evidence of histomorphological changes within the epithelium of the Malpighian tubules (insect primary excretory system) that undergoes cellular degeneration and necrosis secondary to calcium toxicity. We conclude that physiological plasticity to salinity stress is ion-specific and provide evidence for ion-specific toxicity mechanisms in N. triangulifer.
Show more [+] Less [-]Impact of osmoregulation on the differences in Cd accumulation between two contrasting edible amaranth cultivars grown on Cd-polluted saline soils Full text
2017
Xu, Zhi-Min | Li, Qu-Sheng | Yang, Ping | Ye, Han-Jie | Chen, Zi-Shuo | Guo, Shi-Hong | Wang, Lili | He, Bao-Yan | Zeng, E. Y. (Eddy Y.)
This study aimed to investigate the difference of osmoregulation between two edible amaranth cultivars, Liuye (high Cd accumulator) and Quanhong (low Cd accumulator), under salinity stress and determine the effects of such difference on Cd accumulation. A pot experiment was conducted to expose the plants to sewage-irrigated garden soil (mean 2.28 mg kg⁻¹ Cd) pretreated at three salinity levels. Under salinity stress, the concentrations of Cd in the two cultivars were significantly elevated compared with those in the controls, and the Cd concentration in Liuye was statistically higher than that in Quanhong (p < 0.05). Salinity-induced osmoregulation triggered different biogeochemical processes involved in Cd mobilization in the rhizosphere soil, Cd absorption, and translocation by the two cultivars. Rhizosphere acidification induced by an imbalance of cation over anion uptake was more serious in Liuye than in Quanhong, which obviously increased soil Cd bioavailability. Salinity-induced injuries in the cell wall pectin and membrane structure were worse in Liuye than in Quanhong, increasing the risk of Cd entering the protoplasts. The chelation of more cytoplasmic Cd²⁺ with Cl⁻ ions in the roots of Liuye promoted Cd translocation into the shoots. Furthermore, the less organic solutes in the root sap of Liuye than in that of Quanhong also favored Cd translocation into the shoots. Hence, osmoregulation processes can be regarded as important factors in reducing Cd accumulation in crop cultivars grown on saline soils.
Show more [+] Less [-]Road deicing salt irreversibly disrupts osmoregulation of salamander egg clutches Full text
2011
Karraker, Nancy E. | Gibbs, James P.
It has been postulated that road deicing salts are sufficiently diluted by spring rains to ameliorate any physiological impacts to amphibians breeding in wetlands near roads. We tested this conjecture by exposing clutches of the spotted salamander (Ambystoma maculatum) to three chloride concentrations (1 mg/L, 145 mg/L, 945 mg/L) for nine days, then transferred clutches to control water for nine days, and measured change in mass at three-day intervals. We measured mass change because water uptake by clutches reduces risks to embryos associated with freezing, predation, and disease. Clutches in controls sequestered water asymptotically. Those in the moderate concentrations lost 18% mass initially and regained 14% after transfer to control water. Clutches in high concentration lost 33% mass and then lost an additional 8% after transfer. Our results suggest that spring rains do not ameliorate the effects of deicing salts in wetlands with extremely high chloride concentrations.
Show more [+] Less [-]Chronic nitrate exposure cause alteration of blood physiological parameters, redox status and apoptosis of juvenile turbot (Scophthalmus maximus) Full text
2021
Yu, Jiachen | Xiao, Yongshuang | Wang, Yanfeng | Xu, Shihong | Zhou, Li | Li, Jun | Li, Xian
Nitrate (NO₃⁻) is one of the common inorganic nitrogen compound pollutants in natural ecosystems, which may have serious risks for aquatic organisms. However, its toxicological mechanism remains unclear. In the current study, juvenile turbot (Scophthalmus maximus) were exposed to different concentrations of NO₃⁻ (CK− 3.57 ± 0.16, LN − 60.80 ± 1.21, MN − 203.13 ± 10.97 and HN − 414.16 ± 15.22 mg/L NO₃–N) for 60 d. The blood biochemical assays results revealed that elevated NO₃⁻ exposure significantly increased the concentrations of plasma NO₃⁻, NO₂⁻, MetHb, K⁺, cortisol, glucose, triglyceride, lactate, while significantly decreased the concentrations of plasma Hb, Na⁺ and Cl⁻, which meant that NO₃⁻ caused hypoxic stress and further affected the osmoregulation and metabolism in fish. Besides, exposure to MN and HN induced a significant decrease in the level of antioxidants, including SOD (Point: 60th day, MN, HN v.s. CK: 258.36, 203.73 v.s. 326.95 U/mL), CAT (1.97, 1.17 v.s. 2.37 U/mL), GSH (25.38, 20.74 v.s. 37.00 μmol/L), and GPx (85.32, 71.46 v.s. 129.36 U/mL), and a significant increase of MDA (7.54, 9.73 v.s. 5.27 nmol/L), suggesting that NO₃⁻ exposure leading to a disruption of the redox status in fish. Also, further research revealed that NO₃⁻ exposure altered the mRNA levels of p53 (HN: up to 4.28 folds) and p53-regulated downstream genes such as Bcl-2 (inferior to 0.44 folds), caspase-3 (up to 2.90 folds) and caspase-7 (up to 3.49 folds), indicating that NO₃⁻ exposure induced abnormal apoptosis in the fish gills. Moreover, IBRv2 analysis showed that the toxicity of NO₃⁻ exposure to turbot was dose-dependent, and the toxicity peaked on the 15th day. In short, NO₃⁻ is an environmental toxicological factor that cannot be ignored, because its toxic effects are long-term and could cause irreversible damage to fish. These results would be beneficial to improve our understanding of the toxicity mechanism of NO₃⁻ to fish, which provides baseline evidence for the risk assessment of environmental NO₃⁻ in aquatic ecosystems.
Show more [+] Less [-]Chronic pesticide exposure elicits a subtle carry-over effect on the metabolome of Aurelia coerulea ephyrae Full text
2021
Olguín-Jacobson, Carolina | Pitt, Kylie A. | Carroll, Anthony R. | Melvin, Steven D.
Chemical pollutants, such as pesticides, often leach into aquatic environments and impact non-target organisms. Marine invertebrates have complex life cycles with multiple life-history stages. Exposure to pesticides during one life-history stage potentially influences subsequent stages; a process known as a carry-over effect. Here, we investigated carry-over effects on the jellyfish Aurelia coerulea. We exposed polyps to individual and combined concentrations of atrazine (2.5 μg/L) and chlorpyrifos (0.04 μg/L) for four weeks, after which they were induced to strobilate. The resultant ephyrae were then redistributed and exposed to either the same conditions as their parent-polyps or to filtered seawater to track potential carry-over effects. The percentage of deformities, ephyrae size, pulsation and respiration rates, as well as the metabolic profile of the ephyrae, were measured. We detected a subtle carry-over effect in two metabolites, acetoacetate and glycerophosphocholine, which are precursors of the neurotransmitter acetylcholine, important for energy metabolism and osmoregulation of the ephyrae. Although these carry-over effects were not reflected in the other response variables in the short-term, a persistent reduction of these two metabolites could have negative physiological consequences on A. coerulea jellyfish in the long-term. Our results highlight the importance of considering more than one life-history stage in ecotoxicology, and measuring a range of variables with different sensitivities to detect sub-lethal effects caused by anthropogenic stressors. Furthermore, since we identified few effects when using pesticides concentrations corresponding to Australian water quality guidelines, we suggest that future studies consider concentrations detected in the environment, which are higher than the water quality guidelines, to obtain a more realistic scenario by possible risk from pesticide exposure.
Show more [+] Less [-]NMR-based metabolic toxicity of low-level Hg exposure to earthworms Full text
2018
Tang, Ronggui | Ding, Changfeng | Dang, Fei | Ma, Yibing | Wang, Junsong | Zhang, Taolin | Wang, Xingxiang
Mercury is a globally distributed toxicant to aquatic animals and mammals. However, the potential risks of environmental relevant mercury in terrestrial systems remain largely unclear. The metabolic profiles of the earthworm Eisenia fetida after exposure to soil contaminated with mercury at 0.77 ± 0.09 mg/kg for 2 weeks were investigated using a two-dimensional nuclear magnetic resonance-based (¹H-¹³C NMR) metabolomics approach. The results revealed that traditional endpoints (e.g., mortality and weight loss) did not differ significantly after exposure. Although histological examination showed sub-lethal toxicity in the intestine as a result of soil ingestion, the underlying mechanisms were unclear. Metabolite profiles revealed significant decreases in glutamine and 2-hexyl-5-ethyl-3-furansulfonate in the exposed group and remarkable increases in glycine, alanine, glutamate, scyllo-inositol, t-methylhistidine and myo-inositol. More importantly, metabolic network analysis revealed that low mercury in the soil disrupted osmoregulation, amino acid and energy metabolisms in earthworms. A metabolic net link and schematic diagram of mercury-induced responses were proposed to predict earthworm responses after exposure to mercury at environmental relevant concentrations. These results improved the current understanding of the potential toxicity of low mercury in terrestrial systems.
Show more [+] Less [-]Toxicological effects on earthworms (Eisenia fetida) exposed to sub-lethal concentrations of BDE-47 and BDE-209 from a metabolic point Full text
2018
Liang, Ruoyu | Chen, Juan | Shi, Yajuan | Lü, Yonglong | Sarvajayakesavalu, Suriyanarayanan | Xu, Xiangbo | Zheng, Xiaoqi | Kifāyatullāh, K̲h̲ān | Su, Chao
Earthworms improve the soil fertility and they are also sensitive to soil contaminants. Earthworms (Eisenia fetida), standard reference species, were usually chosen to culture and handle for toxicity tests. Metabolic responses in earthworms exposed to 2, 2′, 4, 4′-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) were inhibitory and interfered with basal metabolism. In this study, 1H-NMR based metabolomics was used to identify sensitive biomarkers and explore metabolic responses of earthworms under sub-lethal BDE-47 and BDE-209 concentrations for 14 days. The results revealed that lactate was accumulated in earthworms exposed to BDE-47 and BDE-209. Glutamate increased significantly when the concentration of BDE-47 and BDE-209 reached 10 mg/kg. The BDE-47 exposure above 50 mg/kg concentration decreased the content of fumarate significantly, which was noticed different from that of BDE-209. Whereas, the BDE-207 or BDE-209 exposure increased the protein degradation into amino acids in vivo. The increased betaine content indicated that earthworms may maintain the cell osmotic pressure and protected enzyme activity by metabolic regulation. Moreover, the BDE-47 and BDE-209 exposure at 10 mg/kg changed most of the metabolites significantly, indicating that the metabolic responses were more sensitive than growth inhibition and gene expression. The metabolomics results revealed the toxic modes of BDE-47 and BDE-209 act on the osmoregulation, energy metabolism, nerve activities, tricarboxylic acid cycle and amino acids metabolism. Furthermore, our results highlighted that the 1H-NMR based metabolomics is a strong tool for identifying sensitive biomarkers and eco-toxicological assessment.
Show more [+] Less [-]