Refine search
Results 1-10 of 161
Development of a sequential extraction and speciation procedure for assessing the mobility and fractionation of metal nanoparticles in soils
2020
Choleva, Tatiana G. | Tsogas, George Z. | Vlessidis, Athanasios G. | Giokas, Dimosthenis L.
This study describes the development of a sequential extraction procedure for the evaluation of metal nanoparticle mobility and bioaccessibility in soils. The procedure, that was developed using gold nanoparticles (AuNPs) as model species, relies on the fractionation of nanoparticles by sequentially dissolving soil matrix components (carbonates, metal oxides, organic matter and mineral phases) in order to release the entrapped nanoparticle species in the extract solution. By summing up the concentration of AuNPs recovered in each fraction it was found that 93.5% of the spiked AuNP concentration could be recovered which satisfactorily represents the nominal AuNP concentration in the soil. The efficiency of the procedure was found to depend on several procedural artifacts related to the separation of AuNPs from soil colloids and the reactivity of the extraction reagents with AuNPs and their precursor metal ions. Based on the results obtained a protocol for the speciation of the AuNPs and Au ions in the soil sample was also developed. The results of the study show that both AuNPs and Au ions are mainly associated with soil organic matter, which significantly reduces their mobility, while a small amount (<10%) is associated with metal oxides which are more mobile and potentially bioaccessible. The developed procedure provides a springboard for further development of sequential extraction procedures of metal nanoparticles in soils that could be used to assess both the exposure and release of metal nanoparticles and their precursor metal ions in the environment (as total extractable concentration) as well as provide evidence regarding their bioaccessibility and potential bioavailability by determining the concentration of nanoparticles in each specific soil fraction.
Show more [+] Less [-]Detoxification of aflatoxin B1 by Stenotrophomonas sp. CW117 and characterization the thermophilic degradation process
2020
Cai, Mengyu | Qian, Yingying | Chen, Nan | Ling, Tiejun | Wang, Jingjing | Jiang, Hong | Wang, Xu | Qi, Kezong | Zhou, Yu
Mycotoxins are high toxic, widely distributed contaminants in foodstuff. In this study, a aflatoxin B1 (AFB1) degrading strain S. acidoaminiphila CW117 was screened, and its detoxification characteristics were investigated. Substrate AFB1 at 45 μg/L was degraded by CW117 within 24 h; meanwhile, 4.1 mg/L AFB1 was almost degraded within 48 h. After 24 h degradation, the biotoxicity of the detoxified culture was eliminated. Strain CW117 efficient degradation to AFB1 (especially to low AFB1 concentrations) suggested its potential significance to detoxification development on food and feedstuff. The active degradation components present in the cell-free supernatant. The degradation ratio increased constantly with increasing incubation temperature raised (0–90 °C) and was even stable at 90 °C. Degradation was optimal at pH 6–7, and was only partially inhibited by metal-chelators (EDTA and EGTA), proteinase K, and a protein denaturant (sodium dodecyl sulfate, SDS). The recombinant laccase rLC1 (0.5 mg/mL) from CW117 degraded 29.3% of AFB1 within 24 h; however, the cell-free supernatant degraded 76.7% of the toxin in same time, with much lower protein content. The results indicated the CW117 degrades AFB1 via a combination of enzymes and micro-molecule oxides.
Show more [+] Less [-]Comparison of arsenic fractions and health risks in PM2.5 before and after coal-gas replacement
2020
Xie, Jiao-Jiao | Yuan, Chun-Gang | Xie, Jin | Niu, Xiao-Dong | Zhang, Xu-Rui | Zhang, Ke-Gang | Xu, Pei-Yao | Ma, Xiao-Ying | Lv, Xiang-Bing
Coal-Gas replacement project has been implemented to decrease haze pollution in China in recent years. Airborne arsenic (As) mostly originates from coal burning processes. It is noteworthy to compare the distribution of arsenic fraction in PM₂.₅ before and after coal-gas replacement. Eighty PM₂.₅ samples were collected in Baoding in December 2016 (coal dominated year) and December 2017 (gas dominated year) at different functional areas including residential area (RA), industrial area (IA), suburb (SB), roadside (ST) and Botanical Garden Park (BG). The fraction, bioavailability and health risk of As in the PM₂.₅ samples were investigated and compared between these two years. Arsenic was mainly distributed in the non-specifically sorbed fraction (F1) and the residual fraction (F5). However, the proportion of F1 to the total As in 2017 was higher than that in 2016, while the proportion of As in the amorphous and poorly-crystalline hydrous oxides of Fe and Al fraction (F3) in 2017 was lower. The distributions of fraction and bioavailability showed temporal and spatial characteristics. The total concentration and bioavailability of As in SB and IA were significantly higher than those in RA, ST and BG. The BF (Bioavailability Factor) values of As ranged from 0.30 to 0.61. Health risk assessment indicated that the hazard quotient (HQ) and carcinogenic risk (CR) of As in PM₂.₅ significantly decreased after coal-gas replacement.
Show more [+] Less [-]Health risk assessment of metal(loid)s in soil and particulate matter from industrialized regions: A multidisciplinary approach
2020
Francová, Anna | Chrastný, Vladislav | Vítková, Martina | Šillerová, Hana | Komárek, Michael
In this study, samples of soil and particulate matter obtained from the highly industrialized region of Ostrava, Czech Republic, are used for the toxicity evaluation of the selected metal(loid)s (Cd, Cr, Cu, Ni, Pb, Zn, As). We investigated the samples from sites supposedly affected the most by the local pollution sources using mineralogical techniques (XRD, SEM/EDS) to understand the solid speciation of the contaminants as the crucial factor affecting their release. Although the bulk composition was defined by common silicates and oxides that are rather resistant to leaching, the presence of tiny Ni, Pb, and/or Zn sulfate-like droplets indicated a potential increase of the solubility of these metals. In vitro tests simulating gastric and lung fluids were used to assess the exposure risk for humans, as well as metal(loid) bioaccessibility. Based on the results, the potential risk for the observed age group (3-year-old children) could be recognized, particularly in the cases of As, Pb and Cd for both oral and inhalation exposure. Arsenic exhibits high bioaccessibility (7.13–79.7%, with the median values of 10.6 and 15.6 for SGL and SLF, respectively), high daily intake (1.4- to 8.5-fold higher than the tolerable daily intake) and high concentrations in atmospheric PM₁₀ (2.5 times the tolerable concentration in air). In contrast, Ni exceeded tolerable concentrations in the atmosphere up to 20-fold, but its bioaccessibility remained relatively low (0.1–22%), and Ni did not pose a major threat to human health. Cadmium, Pb and As originating from industrial activities and domestic heating have been suggested to be the most important pollutants (tolerable daily intake was exceeded by up to 74-, 34- and 8-fold for Cd, Pb and As, respectively).
Show more [+] Less [-]Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong
2018
Cui, Jin-li | Zhao, Yan-ping | Li, Jiang-shan | Beiyuan, Jing-zi | Tsang, Daniel C.W. | Poon, C. S. (Chi-sun) | Chan, Ting-shan | Wang, Wen-xiong | Li, Xiang-Dong
The behaviour of arsenic (As) from geogenic soil exposed to aerobic conditions is critical to predict the impact of As on the environment, which processes remain unresolved. The current study examined the depth profile of As in geologically derived subsoil cores from Hong Kong and investigated the mobilization, plant availability, and bioaccessibility of As in As-contaminated soil at different depths (0–45.8 m). Results indicated significant heterogeneity, with high levels of As in three layers of soil reaching up to 505 mg/kg at a depth of 5 m, 404 mg/kg at a depth of 15 m, and 1510 mg/kg at a depth of 27–32 m. Arsenic in porewater samples was <11.5 μg/L in the study site. X-ray absorption spectroscopy (XAS) indicated that main As species in soil was arsenate (As(V)), as adsorbed fraction to Fe oxides (41–69% on goethite and 0–8% on ferrihydrite) or the mineral form scorodite (30–57%). Sequential extraction procedure demonstrated that 0.5 ± 0.4% of As was exchangeable. Aerobic incubation experiments exhibited that a very small amount (0.14–0.48 mg/kg) of As was desorbed from the soil because of the stable As(V) complex structure on abundant Fe oxides (mainly goethite), where indigenous microbes partly (59 ± 18%) contributed to the release of As comparing with the sterilized control. Furthermore, no As toxicity in the soil was observed with the growth of ryegrass. The bioaccessibility of As was <27% in the surface soil using simplified bioaccessibility extraction test. Our systematic evaluation indicated that As in the geogenic soil profile from Hong Kong is relatively stable exposing to aerobic environment. Nevertheless, children and workers should avoid incidental contact with excavated soil, because high concentration of As was present in the digestive solution (<0.1–268 μg/L).
Show more [+] Less [-]Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value
2016
Yu, Huan-Yun | Liu, Chuanping | Zhu, Jishu | Li, Fangbai | Deng, Dong-Mei | Wang, Qi | Liu, Chengshuai
Cadmium (Cd) availability can be significantly affected by soil properties. The effect of pH value on Cd availability has been confirmed. Paddy soils in South China generally contain high contents of iron (Fe). Thus, it is hypothesized that Fe fractions, in addition to pH value, may play an important role in the Cd bioavailability in paddy soil and this requires further investigation. In this study, 73 paired soil and rice plant samples were collected from paddy fields those were contaminated by acid mine drainage containing Cd. The contents of Fe in the amorphous and DCB-extractable Fe oxides were significantly and negatively correlated with the Cd content in rice grain or straw (excluding DCB-extractable Fe vs Cd in straw). In addition, the concentration of HCl-extractable Fe(II) derived from Fe(III) reduction was positively correlated with the Cd content in rice grain or straw. These results suggest that soil Fe redox could affect the availability of Cd in rice plant. Contribution assessment of soil properties to Cd accumulation in rice grain based on random forest (RF) and stochastic gradient boosting (SGB) showed that pH value should be the most important factor and the content of Fe in the amorphous Fe oxides should be the second most important factor in affecting Cd content in rice grain. Overall, compared with the studies from temperate regions, such as Europe and northern China, Fe oxide exhibited its unique role in the bioavailability of Cd in the reddish paddy soil from our study area. The exploration of practical remediation strategies for Cd from the perspective of Fe oxide may be promising.
Show more [+] Less [-]A systematic review of the effectiveness of liming to mitigate impacts of river acidification on fish and macro-invertebrates
2013
Mant, Rebecca C. | Jones, David L. | Reynolds, Brian | Ormerod, Steve J. | Pullin, Andrew S.
The addition of calcium carbonate to catchments or watercourses – liming – has been used widely to mitigate freshwater acidification but the abatement of acidifying emissions has led to questions about its effectiveness and necessity. We conducted a systematic review and meta-analysis of the impact of liming streams and rivers on two key groups of river organisms: fish and invertebrates. On average, liming increased the abundance and richness of acid-sensitive invertebrates and increased overall fish abundance, but benefits were variable and not guaranteed in all rivers. Where B-A-C-I designs (before-after-control-impact) were used to reduce bias, there was evidence that liming decreased overall invertebrate abundance. This systematic review indicates that liming has the potential to mitigate the symptoms of acidification in some instances, but effects are mixed. Future studies should use robust designs to isolate recovery due to liming from decreasing acid deposition, and assess factors affecting liming outcomes.
Show more [+] Less [-]Evaluation of the performance and limitations of empirical partition-relations and process based multisurface models to predict trace element solubility in soils
2012
Groenenberg, Jan E. | Dijkstra, Joris J. | Bonten, Luc T.C. | de Vries, Wim | Comans, Rob N.J.
Here we evaluate the performance and limitations of two frequently used model-types to predict trace element solubility in soils: regression based “partition-relations” and thermodynamically based “multisurface models”, for a large set of elements. For this purpose partition-relations were derived for As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, Se, V, Zn. The multi-surface model included aqueous speciation, mineral equilibria, sorption to organic matter, Fe/Al-(hydr)oxides and clay. Both approaches were evaluated by their application to independent data for a wide variety of conditions. We conclude that Freundlich-based partition-relations are robust predictors for most cations and can be used for independent soils, but within the environmental conditions of the data used for their derivation. The multisurface model is shown to be able to successfully predict solution concentrations over a wide range of conditions. Predicted trends for oxy-anions agree well for both approaches but with larger (random) deviations than for cations.
Show more [+] Less [-]Phytostabilization of semiarid soils residually contaminated with trace elements using by-products: Sustainability and risks
2011
Pérez-de-Mora, Alfredo | Madejón, Paula | Burgos, Pilar | Cabrera, Francisco | Lepp, N. W. (Nicholas W.) | Madejón, Engracia
We investigated the efficiency of various by-products (sugarbeet lime, biosolid compost and leonardite), based on single or repeated applications to field plots, on the establishment of a vegetation cover compatible with a stabilization strategy on a multi-element (As, Cd, Cu, Pb and Zn) contaminated soil 4–6 years after initial amendment applications. Results indicate that the need for re-treatment is amendment- and element-dependent; in some cases, a single application may reduce trace element concentrations in above-ground biomass and enhance the establishment of a healthy vegetation cover. Amendment performance as evaluated by % cover, biomass and number of colonizing taxa differs; however, changes in plant community composition are not necessarily amendment-specific. Although the translocation of trace elements to the plant biotic compartment is greater in re-vegetated areas, overall loss of trace elements due to soil erosion and plant uptake is usually smaller compared to that in bare soil.
Show more [+] Less [-]Oxidation of bisphenol F (BPF) by manganese dioxide
2011
Bisphenol F (BPF), an environmental estrogen, is used as a monomer in plastic industry and its environmental fate and decontamination are emerging concern. This study focused on the kinetics, influencing factors and pathways of its oxidation by MnO₂. At pH 5.5, about 90% of BPF was oxidized in 20min in a solution containing 100μM MnO₂ and 4.4μM BPF. The reaction was pH-dependent, following an order of pH 4.5>pH 5.5>pH 8.6>pH 7.5>pH 6.5>pH 9.6. Humic acids inhibited the reaction at low (≤pH 5.5) and high pH (≥pH 8.6) at high concentrations. In addition, metal ions and anions also suppressed the reaction, following the order Mn²⁺>Ca²⁺>Mg²⁺>Na⁺ and HPO₄ ²⁻>Cl⁻>NO₃ ⁻≈SO₄ ²⁻, respectively. A total of 5 products were identified, from which a tentative pathway was proposed.
Show more [+] Less [-]