Refine search
Results 1-10 of 86
Long-term exposure to nano-TiO2 interferes with microbial metabolism and electron behavior to influence wastewater nitrogen removal and associated N2O emission Full text
2022
Ye, Jinyu | Gao, Huan | Wu, Junkang | Yang, Guangping | Duan, Lijie | Yu, Ran
The extensive use of nano-TiO₂ has caused concerns regarding their potential environmental risks. However, the stress responses and self-recovery potential of nitrogen removal and greenhouse gas N₂O emissions after long-term nano-TiO₂ exposure have seldom been addressed yet. This study explored the long-term effects of nano-TiO₂ on biological nitrogen transformations in a sequencing batch reactor at four levels (1, 10, 25, and 50 mg/L), and the reactor's self-recovery potential was assessed. The results showed that nano-TiO₂ exhibited a dose-dependent inhibitory effect on the removal efficiencies of ammonia nitrogen and total nitrogen, whereas N₂O emissions unexpectedly increased. The promoted N₂O emissions were probably due to the inhibition of denitrification processes, including the reduction of the denitrifying-related N₂O reductase activity and the abundance of the denitrifying bacteria Flavobacterium. The inhibition of carbon source metabolism, the inefficient electron transfer efficiency, and the electronic competition between the denitrifying enzymes would be in charge of the deterioration of denitrification performance. After the withdrawal of nano-TiO₂ from the influent, the nitrogen transformation efficiencies and the N₂O emissions of activated sludge recovered entirely within 30 days, possibly attributed to the insensitive bacteria survival and the microbial community diversity. Overall, this study will promote the current understanding of the stress responses and the self-recovery potential of BNR systems to nanoparticle exposure.
Show more [+] Less [-]Microbial mediated arsenate reducing behavior in landfill leachate-saturated zone Full text
2022
Liu, Jinbao | Zhang, Dongchen | Luo, Yongjun | Ding, Tao | Hu, Lifang
As(V) reduction mediated by microorganisms might be an essential process in resisting As toxicity since As(V) is the major species in the landfill. LSZ has been considered as a trigger of all types of microbial activity inside a landfill site. This research investigated the microbial As(V)-reducing behavior in LSZ. The results revealed that higher As(V)-reduction efficiency in higher As(V) content-stress LSZ scenario. The corresponding microbial diversity also varied with the As(V) content. The microbial community structure was related to arrA and arsC distribution, which encode respiratory As(V) reductase and cytoplasmic As(V) reductase, respectively. The landfill As bio-reduction pathways were modeled, as well as the As functional gene distribution among different As(V) contents at different landfill stages. The C, N, and S metabolic processes generally affected the As(V)-resistance genes distribution. Thiosulfate oxidation, denitrification, and dissimilatory nitrate reduction positively affected arsC, while dissimilatory sulfate reduction and methanogenesis trended to play a negative role. This research provides new insight into As(V) bio-reduction inside a landfill site in terms of functional genes distribution and correlation with nutrient elements metabolic processes.
Show more [+] Less [-]Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX Full text
2021
Yang, Xu | Lai, Jin-long | Zhang, Yu | Luo, Xue-gang | Han, Meng-wei | Zhao, San-ping
This experiment was conducted to evaluate the ecotoxicity of typical explosives and their mechanisms in the soil microenvironment. Here, TNT (trinitrotoluene), RDX (cyclotrimethylene trinitramine), and HMX (cyclotetramethylene tetranitramine) were used to simulate the soil pollution of single explosives and their combination. The changes in soil enzyme activity and microbial community structure and function were analyzed in soil, and the effects of explosives exposure on the soil metabolic spectrum were revealed by non-targeted metabonomics. TNT, RDX, and HMX exposure significantly inhibited soil microbial respiration and urease and dehydrogenase activities. Explosives treatment reduced the diversity and richness of the soil microbial community structure, and the microorganisms able to degrade explosives began to occupy the soil niche, with the Sphingomonadaceae, Actinobacteria, and Gammaproteobacteria showing significantly increased relative abundances. Non-targeted metabonomics analysis showed that the main soil differential metabolites under explosives stress were lipids and lipid-like molecules, organic acids and derivatives, with the phosphotransferase system (PTS) pathway the most enriched pathway. The metabolic pathways for carbohydrates, lipids, and amino acids in soil were specifically inhibited. Therefore, residues of TNT, RDX, and HMX in the soil could inhibit soil metabolic processes and change the structure of the soil microbial community.
Show more [+] Less [-]Selenite bioreduction and biosynthesis of selenium nanoparticles by Bacillus paramycoides SP3 isolated from coal mine overburden leachate Full text
2021
Borah, Siddhartha Narayan | Goswami, Lalit | Sen, Suparna | Sachan, Deepa | Sarma, Hemen | Montes Castillo, Milka Odemariz | Peralta-Videa, Jose R. | Pakshirajan, Kannan | Narain, Mahesh
A native strain of Bacillus paramycoides isolated from the leachate of coal mine overburden rocks was investigated for its potential to produce selenium nanoparticles (SeNPs) by biogenic reduction of selenite, one of the most toxic forms of selenium. 16S rDNA sequencing was used to identify the bacterial strain (SP3). The SeNPs were characterized using spectroscopic (UV–Vis absorbance, dynamic light scattering, X-ray diffraction, and Raman), surface charge measurement (zeta potential), and ultramicroscopic (FESEM, EDX, FETEM) analyses. SP3 exhibited extremely high selenite tolerance (1000 mM) and reduced 10 mM selenite under 72 h to produce spherical monodisperse SeNPs with an average size of 149.1 ± 29 nm. FTIR analyses indicated exopolysaccharides coating the surface of SeNPs, which imparted a charge of −29.9 mV (zeta potential). The XRD and Raman spectra revealed the SeNPs to be amorphous. Furthermore, biochemical assays and microscopic studies suggest that selenite was reduced by membrane reductases. This study reports, for the first time, the reduction of selenite and biosynthesis of SeNPs by B. paramycoides, a recently discovered bacterium. The results suggest that B. paramycoides SP3 could be exploited for eco-friendly removal of selenite from contaminated sites with the concomitant biosynthesis of SeNPs.
Show more [+] Less [-]Green remediation of toxic metals contaminated mining soil using bacterial consortium and Brassica juncea Full text
2021
Jeyasundar, Parimala Gnana Soundari Arockiam | Ali, Amjad | Azeem, Muhammad | Li, Yiman | Guo, Di | Sikdar, Ashim | Abdelrahman, Hamada | Kwon, Eilhann | Antoniadis, Vasileios | Mani, Vellingiri Manon | Shaheen, Sabry M. | Rinklebe, Jörg | Zhang, Zengqiang
Microorganism-assisted phytoremediation is being developed as an efficient green approach for management of toxic metals contaminated soils and mitigating the potential human health risk. The capability of plant growth promoting Actinobacteria (Streptomyces pactum Act12 - ACT) and Firmicutes (Bacillus subtilis and Bacillus licheniformis - BC) in mono- and co-applications (consortium) to improve soil properties and enhance phytoextraction of Cd, Cu, Pb, and Zn by Brassica juncea (L.) Czern. was studied here for the first time in both incubation and pot experiments. The predominant microbial taxa were Proteobacteria, Actinobacteria and Bacteroidetes, which are important lineages for maintaining soil ecological activities. The consortium improved the levels of alkaline phosphatase, β-D glucosidase, dehydrogenase, sucrase and urease (up to 33%) as compared to the control. The bacterial inoculum also triggered increases in plant fresh weight, pigments and antioxidants. The consortium application enhanced significantly the metals bioavailability (DTPA extractable) and mobilization (acid soluble fraction), relative to those in the unamended soil; therefore, significantly improved the metals uptake by roots and shoots. The phytoextraction indices indicated that B. juncea is an efficient accumulator of Cd and Zn. Overall, co-application of ACT and BC can be an effective solution for enhancing phytoremediation potential and thus reducing the potential human health risk from smelter-contaminated soil. Field studies may further credit the understanding of consortium interactions with soil and different plant systems in remediating multi-metal contaminated environments.
Show more [+] Less [-]Streptomyces pactum and Bacillus consortium influenced the bioavailability of toxic metals, soil health, and growth attributes of Symphytum officinale in smelter/mining polluted soil Full text
2021
Ali, Amjad | Li, Yiman | Arockiam Jeyasundar, Parimala Gnana Soundari | Azeem, Muhammad | Su, Junfeng | Fazl-i-Wahid, | Mahar, Amanullah | Shah, Muhammad Zahir | Li, Ronghua | Zhang, Zengqiang
Soil microbes influence the uptake of toxic metals (TMs) by changing soil characteristics, bioavailability and translocation of TMs, and soil health indicators in polluted environment. The potential effect of Streptomyces pactum (Act12) and Bacillus consortium (B. subtilis and B. licheniformis; 1:1) on soil enzymes and bacterial abundance, bioavailability and translocation of Zn and Cd by Symphytum officinale, and physiological indicators in soil acquired from Fengxian (FX) mining site. Act12 and Bacillus consortium were applied at 0 (CK), 0.50 (T1), 1.50 (T2), and 2.50 (T3) g kg⁻¹ in a split plot design and three times harvested (H). Results showed that soil pH significantly dropped, whereas, electrical conductivity increased at higher Act12 and Bacillus doses. The extractable Zn lowered and Cd increased at each harvest compared to their controls. Soil β-glucosidase, alkaline phosphatase, urease and sucrase improved, whereas, dehydrogenase reduced in harvest 2 and 3 (H2 and H3) as compared to harvest 1 (H1) after Act12 and Bacillus treatments. The main soil phyla individually contributed ∼5–55.6%. Soil bacterial communities’ distribution was also altered by Act12 and Bacillus amendments. Proteobacteria, Acidobacteria, and Bacteroidetes increased, whereas, the Actinobacteria, Chloroflexi, and Gemmatimonadetes decreased during the one-year trial. The Zn and Cd concentration significantly decreased in shoots at each harvest, whereas, the roots concentration was far higher than the shoots, implicating the rhizoremediation by S. officinale. Accumulation factor (AF) and bioconcentration ratio (BCR) of Zn and Cd in shoots were lower and remained higher in case of roots than the standard level (≥1). BCR values of roots indicated that S. officinale can be used for rhizoremediation of TMs in smelter/mines-polluted soils. Thus, field trials in smelter/mines contaminated soils and the potential role of saponin and tannin exudation in metal translocation by plant will broaden our understanding about the mechanism of rhizoremediation of TMs by S. officinale.
Show more [+] Less [-]Fatty liver and impaired hepatic metabolism alter the congener-specific distribution of polychlorinated biphenyls (PCBs) in mice with a liver-specific deletion of cytochrome P450 reductase Full text
2020
Li, Xueshu | Zhang, Chunyun | Wang, Kai | Lehmler, Hans-Joachim
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that are linked to adverse health outcomes. PCB tissue levels are determinants of PCB toxicity; however, it is unclear how factors, such as an altered metabolism and/or a fatty liver, affect PCB distribution in vivo. We determined the congener-specific disposition of PCBs in mice with a liver-specific deletion of cytochrome P450 reductase (KO), a model of fatty liver with impaired hepatic metabolism, and wild-type (WT) mice. Eight-week-old male WT (MWT, n = 3), male KO (MKO, n = 5), female WT (FWT, n = 4), and female KO mice (FKO, n = 4) were exposed orally to Aroclor 1254. PCBs were quantified in adipose, blood, brain, and liver tissues by gas chromatography-mass spectrometry. The ΣPCB levels followed the rank order adipose > liver ∼ brain > blood in WT and adipose ∼ liver > brain > blood in KO mice. PCB levels were much higher in the liver of KO than WT mice, irrespective of the sex. A comparison across exposure groups revealed minor genotype and sex-dependent differences in the PCB congener profiles (cos Θ > 0.92). Within each exposure group, tissue profiles showed small differences between tissues (cos Θ = 0.85 to 0.98). These differences were due to a decrease in metabolically more labile PCB congeners and an increase in congeners resistant to metabolism. The tissue-to-blood ratio of PCBs decreased for adipose, increased for the brain, and remained constant for the liver with an increase in chlorination. While these ratios did not follow the trends predicted using a composition-based model, the agreement between experimental and calculated partition coefficients was reasonable. Although the distribution of PCBs differs between KO and WT mice, the magnitude of the partitioning of PCBs from the blood into tissues can be approximated using composition-based models.
Show more [+] Less [-]Remediation of resins-contaminated soil by the combination of electrokinetic and bioremediation processes Full text
2020
Ma, Jing | Zhang, Qi | Chen, Fu | Zhu, Qianlin | Wang, Yifei | Liu, Gangjun
In this work, soil contaminated by petroleum resins was remediated by electrokinetic-bioremediation (EK-BIO) technology for 60 days. A microbial consortium, comprising Rhizobium sp., Arthrobacter globiformis, Clavibacter xyli, Curtobacterium flaccumfaciens, Bacillus subtilis, Pseudomonas aeruginosa and Bacillus sp., was used to enhance the treatment performance. The results indicate that resin removal and phytotoxicity reduction were highest in the inoculated EK process, wherein 23.6% resins was removed from the soil and wheat seed germination ratio was increased from 47% to around 90% after treatment. The microbial counts, soil basal respiration and dehydrogenase activity were positively related to resins degradation, and they could be enhanced by direct current electric field. After remediation, the C/H ratio of resins decreased from 8.03 to 6.47. Furthermore, the structure of resins was analyzed by Fourier-transform infrared spectroscopy, elemental analysis, and ¹H nuclear magnetic resonance (¹H NMR) before and after treatment. It was found that the changes of the structure of resins took place during EK-BIO treatment and finally led to the reduction of aromaticity, aromaticity condensation and phytotoxicity.
Show more [+] Less [-]SFPQ is involved in regulating arsenic-induced oxidative stress by interacting with the miRNA-induced silencing complexes Full text
2020
Guo, Ping | Chen, Shen | Li, Daochuan | Zhang, Jinmiao | Luo, Jiao | Zhang, Aihua | Yu, Dianke | Bloom, Michael S. | Chen, Liping | Chen, Wen
Arsenic exposure contributed to the development of human diseases. Arsenic exerted multiple organ toxicities mainly by triggering oxidative stress. However, the signaling pathway underlying oxidative stress is unclear. We previously found that the expression of SFPQ, a splicing factor, was positively associated with urinary arsenic concentration in an arsenic-exposed population, suggesting an oxidative stress regulatory role for SFPQ. To test this hypothesis, we established cell models of oxidative stress in human hepatocyte cells (L02) treated with NaAsO₂. Reactive oxygen species (ROS) synthesis displayed a time- and dose-dependent increase with NaAsO₂ treatment. SFPQ suppression resulted in a 36%–53% decrease in ROS generation, leading to enhanced cellular damage determined by 8-OHdG, comet tail moment, and micronucleus analysis. Particularly, SFPQ deficiency attenuated expression of the oxidase genes DUOX1, DUOX2, NCF2, and NOX2. A fluorescent-based RNA electrophoretic mobility shift assay (FREMSA) and dual-luciferase reporter system revealed that miR-92b-5p targeted DUOX2 mRNA degradation. An RNA immunoprecipitation assay showed an interaction between SFPQ and miR-92b-5p of the miRNA-induced silencing complex (miRISC). Notably, NaAsO₂ treatment diminished the interaction between SFPQ and miR92b-5p, accompanied by decreased binding between miR-92b-5p and 3′-UTR of DUOX2. However, SFPQ deficiency suppressed the dissociation of miR-92b-5p from 3′-UTR of DUOX2, indicating that miR-92b-5p regulated the SFPQ-dependent DUOX2 expression. Taken together, we reveal that SFPQ responds to arsenic-induced oxidative stress by interacting with the miRISC. These findings offer new insight into the potential role of SFPQ in regulating cellular stress response.
Show more [+] Less [-]The combined supplementation of melatonin and salicylic acid effectively detoxifies arsenic toxicity by modulating phytochelatins and nitrogen metabolism in pepper plants Full text
2022
Kaya, Cengiz | Sarıoglu, Ali | Ashraf, Muhammad | Alyemeni, Mohammed Nasser | Ahmad, Parvaiz
The main objective of the study was to assess if joint application of melatonin (MT, 0.1 mM) and salicylic acid (SA 0.5 mM) could improve tolerance of pepper plants to arsenic (As) as sodium hydrogen arsenate heptahydrate (0.05 mM). The imposition of arsenic stress led to accumulation of As in roots and leaves, and increased contents of leaf proline, phytochelatins, malondialdehyde (MDA) and H₂O₂, but it reduced plant biomass, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm) and leaf water potential. Melatonin and SA applied jointly or alone enhanced nitrogen metabolism by triggering the activities of glutamate synthase, glutamine synthetase, and nitrite reductases and nitrate. In comparison with a single treatment of MT or SA, the joint treatment of MT and SA had better impact on enhancing growth and key biological events and decreasing tissue As content. This clearly shows a cooperative function of both agents in enhancing tolerance to As-toxicity in pepper plants.
Show more [+] Less [-]