Refine search
Results 1-10 of 2,211
Effect of Auto Road on Spatial Metal Distribution in Dust and Snow Cover
2023
Ankomah Baah, Gabriel | Savin, Igor | Rogova, Olga
The present investigation examined the impact of highways on the global dispersion patterns of metallic elements present in dust and snow. A total of 18 mixed snow samples were collected from both sides of the Moscow-Tambo-Astrakhan Caspian Highway by the end of the winter season. The analysis of the samples indicated the presence of 35 distinct chemical elements, where Al, Ba, Ca, Fe, K, Mg, Na, and Zn were identified as the primary contaminants. The primary area of pollution on the windward side originating from the road spans a distance of 20-40 meters, while on the leeward side, it extends to 10 meters. The data presented suggests that the metals found in highways exhibited variability in terms of their solubility in water and concentration. Our findings demonstrate that the predominant wind directions affect the dispersion of pollutants. Furthermore, it was observed that the region with a higher concentration of metal on the side of the road facing the wind had a thickness that was 2-3 times less than that of the opposite side. It is advisable to conduct a subsequent inquiry within the ensuing five years to obtain dependable data regarding the extent of metal pollution.
Show more [+] Less [-]Effects of respirators to reduce fine particulate matter exposures on blood pressure and heart rate variability: A systematic review and meta-analysis
2022
Faridi, Sasan | Brook, Robert D. | Yousefian, Fatemeh | Hassanvand, Mohammad Sadegh | Nodehi, Ramin Nabizadeh | Shamsipour, Mansour | Rajagopalan, Sanjay | Naddafi, Kazem
Particulate-filtering respirators (PFRs) have been recommended as a practical personal-level intervention to protect individuals from the health effects of particulate matter exposure. However, the cardiovascular benefits of PFRs including improvements in key surrogate endpoints remain unclear. We performed a systematic review and meta-analysis of randomized studies (wearing versus not wearing PFRs) reporting the effects on blood pressure (BP) and heart rate variability (HRV). The search was performed on January 3, 2022 to identify published papers until this date. We queried three English databases, including PubMed, Web of Science Core Collection and Scopus. Of 527 articles identified, eight trials enrolling 312 participants (mean age ± standard deviation: 36 ± 19.8; 132 female) met our inclusion criteria for analyses. Study participants wore PFRs from 2 to 48 h during intervention periods. Wearing PFRs was associated with a non-significant pooled mean difference of −0.78 mmHg (95% confidence interval [CI]: −2.06, 0.50) and −0.49 mmHg (95%CI: −1.37, 0.38) in systolic and diastolic BP (SBP and DBP). There was a marginally significant reduction of mean arterial pressure (MAP) by nearly 1.1 mmHg (95%CI: −2.13, 0.01). The use of PFRs was associated with a significant increase of 38.92 ms² (95%CI: 1.07, 76.77) in pooled mean high frequency (power in the high frequency band (0.15–0.4 Hz)) and a reduction in the low (power in the low frequency band (0.04–0.15Hz))-to-high frequency ratio [−0.14 (95%CI: −0.27, 0.00)]. Other HRV indices were not significantly changed. Our meta-analysis demonstrates modest or non-significant improvements in BP and many HRV parameters from wearing PFRs over brief periods. However, these findings are limited by the small number of trials as well as variations in experimental designs and durations. Given the mounting global public health threat posed by air pollution, larger-scale trials are warranted to elucidate more conclusively the potential health benefits of PFRs.
Show more [+] Less [-]Association between fine particulate matter and coronary heart disease: A miRNA microarray analysis
2022
Guo, Jianhui | Xie, Xiaoxu | Wu, Jieyu | Yang, Le | Ruan, Qishuang | Xu, Xingyan | Wei, Donghong | Wen, Yeying | Wang, Tinggui | Hu, Yuduan | Lin, Yawen | Chen, Mingjun | Wu, Jiadong | Lin, Shaowei | Li, Huangyuan | Wu, Siying
Several studies have reported an association between residential surrounding particulate matter with an aerodynamic diameter ≤2.5 μm (PM₂.₅) and coronary heart disease (CHD). However, the underlying biological mechanism remains unclear. To fill this research gap, this study enrolled a residentially stable sample of 942 patients with CHD and 1723 controls. PM₂.₅ concentration was obtained from satellite-based annual global PM₂.₅ estimates for the period 1998–2019. MicroRNA microarray and pathway analysis of target genes was performed to elucidate the potential biological mechanism by which PM₂.₅ increases CHD risk. The results showed that individuals exposed to high PM₂.₅ concentrations had higher risks of CHD than those exposed to low PM₂.₅ concentrations (odds ratio = 1.22, 95% confidence interval: 1.00, 1.47 per 10 μg/m³ increase in PM₂.₅). Systolic blood pressure mediated 6.6% of the association between PM₂.₅ and CHD. PM₂.₅ and miR-4726-5p had an interaction effect on CHD development. Bioinformatic analysis demonstrated that miR-4726-5p may affect the occurrence of CHD by regulating the function of RhoA. Therefore, individuals in areas with high PM₂.₅ exposure and relative miR-4726-5p expression have a higher risk of CHD than their counterparts because of the interaction effect of PM₂.₅ and miR-4726-5p on blood pressure.
Show more [+] Less [-]A three-dimensional LUR framework for PM2.5 exposure assessment based on mobile unmanned aerial vehicle monitoring
2022
Xu, Xiangyu | Qin, Ning | Zhao, Wenjing | Tian, Qi | Si, Qi | Wu, Weiqi | Iskander, Nursiya | Yang, Zhenchun | Zhang, Yawei | Duan, Xiaoli
Land use regression (LUR) models have been widely used in epidemiological studies and risk assessments related to air pollution. Although efforts have been made to improve the performance of LUR models so that they capture the spatial heterogeneity of fine particulate matter (PM₂.₅) in high-density cities, few studies have revealed the vertical differences in PM₂.₅ exposure. This study proposes a three-dimensional LUR (3-D LUR) assessment framework for PM₂.₅ exposure that combines a high-resolution LUR model with a vertical PM₂.₅ variation model to investigate the results of horizontal and vertical mobile PM₂.₅ monitoring campaigns. High-resolution LUR models that were developed independently for daytime and nighttime were found to explain 51% and 60% of the PM₂.₅ variation, respectively. Vertical measurements of PM₂.₅ from three regions were first parameterized to produce a coefficient of variation for the concentration (CVC) to define the rate at which PM₂.₅ changes at a certain height relative to the ground. The vertical variation model for PM₂.₅ was developed based on a spline smoothing function in a generalized additive model (GAM) framework with an adjusted R² of 0.91 and explained 92.8% of the variance. PM₂.₅ exposure levels for the population in the study area were estimated based on both the LUR models and the 3-D LUR framework. The 3-D LUR framework was found to improve the accuracy of exposure estimation in the vertical direction by avoiding exposure estimation errors of up to 5%. Although the 3-D LUR-based assessment did not indicate significant variation in estimates of premature mortality that could be attributed to PM₂.₅, exposure to this pollutant was found to differ in the vertical direction. The 3-D LUR framework has the potential to provide accurate exposure estimates for use in future epidemiological studies and health risk assessments.
Show more [+] Less [-]Urban fine particulate matter causes cardiac hypertrophy through calcium-mediated mitochondrial bioenergetics dysfunction in mice hearts and human cardiomyocytes
2022
Zou, Lingyue | Li, Binjing | Xiong, Lilin | Wang, Yan | Xie, Wenjing | Huang, Xiaoquan | Liang, Ying | Wei, Tingting | Liu, Na | Chang, Xiaoru | Bai, Changcun | Wu, Tianshu | Xue, Yuying | Zhang, Ting | Tang, Meng
In recent years, the cardiovascular toxicity of urban fine particulate matter (PM₂.₅) has sparked significant alarm. Mitochondria produce 90% of ATP and make up 30% of the volume of cardiomyocytes. Thus knowledge of myocardial mitochondrial dysfunction due to PM₂.₅ exposure is essential for further cardiotoxic effects. Here, the mechanism of PM₂.₅-induced cardiac hypertrophy through calcium overload and mitochondrial dysfunction was investigated in vivo and in vitro. Male and female BALB/c mice were given 1.28, 5.5, and 11 mg PM₂.₅/kg bodyweight weekly through oropharyngeal inhalation for four weeks and were assigned to low, medium, and high dose groups, respectively. PM₂.₅-induced myocardial edema and cardiac hypertrophy were detected in the high-dose group. Mitochondria were scattered and ruptured with abnormal ultrastructural morphology. In vitro experiments on human cardiomyocyte AC16 showed that exposure to PM₂.₅ for 24 h caused opened mitochondrial permeability transition pore --leading to excessive calcium production, decreased mitochondrial membrane potential, weakened mitochondrial respiratory metabolism capacity, and decreased ATP production. Nevertheless, the administration of calcium chelator ameliorated the mitochondrial damage in the PM₂.₅-treated group. Our in vivo and in vitro results confirmed that calcium overload under PM₂.₅ exposure triggered mTOR/AKT/GSK-3β activation, leading to mitochondrial bioenergetics dysfunction and cardiac hypertrophy.
Show more [+] Less [-]The inhibition effect of bank credits on PM2.5 concentrations: Spatial evidence from high-polluting firms in China
2022
Yang, Fuyong | Xu, Qingsong | Li, Kunming | Yuen, Kum Fai | Shi, Wenming
Particulate Matter (PM₂.₅) pollution in China has been a primary concern for public health in recent years, which requires banks to appropriately control their credit supply to industries with high pollution, high energy consumption, and surplus capacity. For this reason, this paper examines economic determinants of PM₂.₅ concentrations and incorporates the spatial spillover effect of bank credit by employing the spatial Durbin model (SDM) under the stochastic impacts by regression on population, affluence and technology framework. Using China's provincial dataset from 1998 to 2016, the main findings are as follows: First, there is evidence in support of spatial dependence of PM₂.₅ concentrations and their inverted U-shaped relationship with economic growth in China. Second, PM₂.₅ concentrations in a province tend to increase as the level of its own urbanization increases, but they decrease as its own human capital and bank credit increase. Meanwhile, the level of neighboring urbanization positively influences a province's PM₂.₅ concentrations, whereas neighboring population size, industrialization, trade openness, and bank credit present negative impacts. Third, indirect effects of the SDM indicate significant and negative spatial spillover effect of bank credit on PM₂.₅ concentrations. These findings implicate policies on reforming economic growth, urbanization, human capital and bank credit to tackle PM₂.₅ pollution in China from a cross-provincial collaboration perspective.
Show more [+] Less [-]Probiotics, prebiotics, and synbiotics to prevent or combat air pollution consequences: The gut-lung axis
2022
Keulers, Loret | Dehghani, Ali | Knippels, Leon | Garssen, J. | Papadopoulos, Nikolaos | Folkerts, Gert | Braber, Saskia | van Bergenhenegouwen, Jeroen
Air pollution exposure is a public health emergency, which attributes globally to an estimated seven million deaths on a yearly basis We are all exposed to air pollutants, varying from ambient air pollution hanging over cities to dust inside the home. It is a mixture of airborne particulate matter and gases that can be subdivided into three categories based on particle diameter. The smallest category called PM₀.₁ is the most abundant. A fraction of the particles included in this category might enter the blood stream spreading to other parts of the body. As air pollutants can enter the body via the lungs and gut, growing evidence links its exposure to gastrointestinal and respiratory impairments and diseases, like asthma, rhinitis, respiratory tract infections, Crohn's disease, ulcerative colitis, and abdominal pain. It has become evident that there exists a crosstalk between the respiratory and gastrointestinal tracts, commonly referred to as the gut-lung axis. Via microbial secretions, metabolites, immune mediators and lipid profiles, these two separate organ systems can influence each other. Well-known immunomodulators and gut health stimulators are probiotics, prebiotics, together called synbiotics. They might combat air pollution-induced systemic inflammation and oxidative stress by optimizing the microbiota composition and microbial metabolites, thereby stimulating anti-inflammatory pathways and strengthening mucosal and epithelial barriers. Although clinical studies investigating the role of probiotics, prebiotics, and synbiotics in an air pollution setting are lacking, these interventions show promising health promoting effects by affecting the gastrointestinal- and respiratory tract. This review summarizes the current data on how air pollution can affect the gut-lung axis and might impact gut and lung health. It will further elaborate on the potential role of probiotics, prebiotics and synbiotics on the gut-lung axis, and gut and lung health.
Show more [+] Less [-]Decrease in life expectancy due to COVID-19 disease not offset by reduced environmental impacts associated with lockdowns in Italy
2022
Rugani, Benedetto | Conticini, Edoardo | Frediani, Bruno | Caro, Dario
The consequence of the lockdowns implemented to address the COVID-19 pandemic on human health damage due to air pollution and other environmental issues must be better understood. This paper analyses the effect of reducing energy demand on the evolution of environmental impacts during the occurrence of 2020-lockdown periods in Italy, with a specific focus on life expectancy. An energy metabolism analysis is conducted based on the life cycle assessment (LCA) of all monthly energy consumptions, by sector, category and province area in Italy between January 2015 to December 2020. Results show a general decrease (by ∼5% on average) of the LCA midpoint impact categories (global warming, stratospheric ozone depletion, fine particulate matter formation, etc.) over the entire year 2020 when compared to past years. These avoided impacts, mainly due to reductions in fossil energy consumptions, are meaningful during the first lockdown phase between March and May 2020 (by ∼21% on average). Regarding the LCA endpoint damage on human health, ∼66 Disability Adjusted Life Years (DALYs) per 100,000 inhabitants are estimated to be saved. The analysis shows that the magnitude of the officially recorded casualties is substantially larger than the estimated gains in human lives due to the environmental impact reductions. Future research could therefore investigate the complex cause-effect relationships between the deaths occurred in 2020 imputed to COVID-19 disease and co-factors other than the SARS-CoV-2 virus.
Show more [+] Less [-]Geostationary satellite-derived ground-level particulate matter concentrations using real-time machine learning in Northeast Asia
2022
Park, Seohui | Im, Jungho | Kim, Jhoon | Kim, Sang-min
Rapid economic growth, industrialization, and urbanization have caused frequent air pollution events in East Asia over the last few decades. Recently, aerosol data from geostationary satellite sensors have been used to monitor ground-level particulate matter (PM) concentrations hourly. However, many studies have focused on using historical datasets to develop PM estimation models, often decreasing their predictability for unseen data in new days. To mitigate this problem, this study proposes a novel real-time learning (RTL) approach to estimate PM with aerodynamic diameters of <10 μm (PM₁₀) and <2.5 μm (PM₂.₅) using hourly aerosol data from the Geostationary Ocean Color Imager (GOCI) and numerical model outputs for daytime conditions over Northeast Asia. Three schemes with different weighting strategies were evaluated using 10-fold cross-validation (CV). The RTL models, which considered both concentration and time as weighting factors (i.e., Scheme 3) yielded consistent improvement for 10-fold CV performance on both hourly and monthly scales. The real-time calibration results for PM₁₀ and PM₂.₅ were R² = 0.97 and 0.96, and relative root mean square error (rRMSE) = 12.1% and 12.0%, respectively, and the 10-fold CV results for PM₁₀ and PM₂.₅ were R² = 0.73 and 0.69 and rRMSE = 41.8% and 39.6%, respectively. These results were superior to results from the offline models in previous studies, which were based on historical data on an hourly scale. Moreover, we estimated PM concentrations in the ocean without using land-based variables, and clearly demonstrated the PM transport over time. Because the proposed models are based on the RTL approach, the density of in-situ monitoring sites could be a major uncertainty factor. This study identified that a high error occurred in low-density areas, whereas a low error occurred in high-density areas. The proposed approach can be operated to monitor ground-level PM concentrations in real-time with uncertainty analysis to ensure optimal results.
Show more [+] Less [-]Biological toxicity risk assessment of two potential neutral carbon diesel fuel substitutes
2022
Arias, Silvana | Estrada, Verónica | Ortiz, Isabel C. | Molina, Francisco J. | Agudelo, John R.
We investigated the biological response of soluble organic fraction (SOF) and water-soluble fraction (WSF) extracted from particulate matter (PM) emitted by an automotive diesel engine operating in a representative urban driving condition. The engine was fueled with ultra-low sulfur diesel (ULSD), and its binary blends by volume with 13% of butanol (Bu13), and with hydrotreated vegetable oil (HVO) at 13% (HVO13) and 20% (HVO20). Cytotoxicity, genotoxicity, oxidative DNA damage and ecotoxicity tests were carried out, and 16 polycyclic aromatic hydrocarbons (PAH) expressed as tbenzo(a)pyrene total toxicity equivalent (BaP-TEQ) were also analyzed. The Hepatocarcinoma epithelial cell line (HepG2) was exposed to SOF for 24 h and analyzed using comet assay, with the inclusion of formamidopyrimidine DNA glycosylase (FPG) and endonuclease III (Endo III) to recognize oxidized DNA bases. The WSF was evaluated through acute ecotoxicity tests with the aquatic microcrustacean Daphnia pulex (D. Pulex). Results showed that there was no cytotoxic activity for all tested SOF concentrations. Genotoxic responses by all the SOF samples were at same level, except for the HVO13 which was weaker in the absence of the enzymes. The addition of the FPG and Endo III enzymes resulted in a significant increase in the comet tail, indicating that the DNA damage from SOF for all tested fuel blends involves oxidative damage including a higher level of oxidized purines for ULSD and Bu13 in comparison with HVO blends, but the oxidized pyrimidines for HVO blends were slightly higher compared to Bu13. The WSF did not show acute ecotoxicity for any of the fuels. Unlike other samples, Bu13-derived particles significantly increase the BaP-TEQ. The contribution to the genotoxic activity and oxidative DNA from SOF was not correlated to BaP-TEQ, which means that the biological activity of PM might be affected also by other toxic compounds present in particulate phase.
Show more [+] Less [-]