Refine search
Results 1-10 of 309
Two low-toxic Klebsiella pneumoniae strains from gut of black soldier fly Hermetia illucens are multi-resistance to sulfonamides and cadmium
2022
Shi, Zhihui | Zhang, Jie | Jiang, Yijie | Wen, Yiting | Gao, Zhenghui | Deng, Wenhui | Yin, Yumeng | Zhu, Fen
In recent years, pollution of antibiotics and heavy metal has often been reported in organic wastes. Saprophytic insects have been recorded as biological control agents in organic waste management. During organic waste conversion, the intestinal bacteria of the saprophytic insects play an important role in digestion, physiology, immunity and prevention of pathogen colonization. Black soldier fly (BSF) Hermetia illucens has been widely used as saprophytic insects and showed tolerance to sulfonamides (SAs) and cadmium (Cd). Diversity and changes in gut microbiota of black soldier fly larvae (BSFL) were evaluated through 16S rRNA high-throughput sequencing, and a decrease in diversity of gut microbiota along with an increase in SAs stress was recorded. Major members identified were Actinomycetaceae, Enterobacteriaceae, and Enterococcaceae. And fourteen multi-resistance Klebsiella pneumoniae strains were isolated. Two strains BSFL7-B-5 (from middle midgut of 7-day BSFL) and BSFL11-C-1 (from posterior midgut of 11-day BSFL) were found to be low-toxic and multi-resistance. The adsorption rate of SAs in 5 mg/kg solutions by these two strains reached 65.2% and 61.6%, respectively. Adsorption rate of Cd in 20 mg/L solutions was 77.2% for BSFL7-B-5. The strain BSFL11-C-1 showed higher than 70% adsorption rates of Cd in 20, 30 and 40 mg/L solutions. This study revealed that the presence of multi-resistance bacterial strains in the gut of BSFL helped the larvae against SAs or Cd stress. After determining how and where they are used, selected BSFL gut bacterial strains might be utilized in managing SAs or Cd contamination at suitable concentrations in the future.
Show more [+] Less [-]Abundance and environmental host range of the SXT/R391 ICEs in aquatic environmental communities
2021
Roman, Veronica L. | Merlin, Christophe | Baron, Sandrine | Larvor, Emeline | Le Devendec, Laetitia | Virta, Marko P.J. | Bellanger, Xavier
Mobile genetic elements (MGEs) such as plasmids or integrative conjugative elements (ICEs) are widely involved in the horizontal transfer of antibiotic resistant genes (ARGs), but their environmental host-range and reservoirs remain poorly known, as mainly assessed through the analysis of culturable and clinical bacterial isolates. In this study, we used a gradual approach for determining the environmental abundance and host-range of ICEs belonging to the SXT/R391 family, otherwise well known to bring ARGs in Vibrio spp. epidemic clones and other pathogens. First, by screening a set of aquatic bacteria libraries covering 1794 strains, we found that almost 1% of the isolates hosted an SXT/R391 element, all belonging to a narrow group of non-O1/non-O139 Vibrio cholerae. However, when SXT/R391 ICEs were then quantified in various aquatic communities, they appeared to be ubiquitous and relatively abundant, from 10⁻⁶ to 10⁻³ ICE copies per 16 S rDNA. Finally, the molecular exploration of the SXT/R391 host-range in two river ecosystems impacted by anthropogenic activities, using the single-cell genomic approach epicPCR, revealed several new SXT/R391 hosts mostly in the Proteobacteria phylum. Some, such as the pathogen Arcobacter cryaerophilus (Campylobacteraceae), have only been encountered in discharged treated wastewaters and downstream river waters, thus revealing a likely anthropogenic origin. Others, such as the non-pathogenic bacterium Neptunomonas acidivorans (Oceanospirillaceae), were solely identified in rivers waters upstream and downstream the treated wastewaters discharge points and may intrinsically belong to the SXT/R391 environmental reservoir. This work points out that not only the ICEs of the SXT/R391 family are more abundant in the environment than anticipated, but also that a variety of unsuspected hosts may well represent a missing link in the environmental dissemination of MGEs from and to bacteria of anthropogenic origin.
Show more [+] Less [-]Silent effect of the fungicide pyraclostrobin on the larval exposure of the non-target organism Africanized Apis mellifera and its interaction with the pathogen Nosema ceranae in adulthood
2020
Tadei, Rafaela | Menezes-Oliveira, Vanessa B. | Silva-Zacarin, Elaine C.M.
The frequent exposure of bees to a wide variety of fungicides, on crops where they forage, can be considered a stressor factor for these pollinators. The organisms are exposed both to the fungicide active ingredients and to the adjuvants of commercial formulations. All these ingredients are brought to the hive by bee foragers through contaminated pollen and nectar, thus exposing also immature individuals during larval phase. This work aimed to compare the effects of larval exposure to the fungicide pyraclostrobin (active ingredient and commercial formulation) and its influence on the cytotoxicity to midguts in adults, which were inoculated with the Nosema ceranae spores in the post-emergence stage. Under laboratory conditions, Apis mellifera larvae received an artificial diet containing fungicide solution from the third to the sixth day of the feeding phase. One-day-old adult workers ingested 100,000 infectious N. ceranae spores mixed in sucrose solution. Effects on midgut were evaluated through cellular biomarkers of stress and cell death. The exposure to the fungicide (active ingredient and commercial formulation) did not affect the larval post-embryonic development and survival of adult bees. However, this exposure induced cytotoxicity in the cells of the midgut, showed by the increase in DNA fragmentation and alteration in the HSP70 immunolabeling pattern. Without the pathogen, the midgut cytotoxic effects and HSP70 immunolabeling of the organisms exposed to the commercial formulation were lower when compared to the exposure to its active ingredient. However, in the presence of the pathogen, the cytotoxic effects of the commercial formulation to the adult bees’ midgut were potentialized. The pathogen N. ceranae increased the damage to the intestinal epithelium of adult bees. Thus, realistic doses of pyraclostrobin present in beebread consumed by larvae can affect the health and induce physiological implications to the midgut functions of the adult bees.
Show more [+] Less [-]Effects of multi-year biofumigation on soil bacterial and fungal communities and strawberry yield
2020
Zhang, Daqi | Yan, Dongdong | Cheng, Hongyan | Fang, Wensheng | Huang, Bin | Wang, Xianli | Wang, Xiaoning | Yan, Yue | Ouyang, Canbin | Li, Yuan | Wang, Qiuxia | Cao, Aocheng
Biofumigation is an effective, non-chemical method to control soil-borne pests and diseases and to maximize crop yield. We studied the responses of soil bacterial and fungal communities, the soil’s nutritional state and strawberry yield, when the soil was biofumigated each year for five consecutive years using fresh chicken manure (BioFum). BioFum significantly increased the soil’s NH4+-N, NO3−-N, available P and K and organic matter. Fusarium spp. and Phytophthora spp. which are known to cause plant disease, were significantly decreased after BioFum. In addition, Biofum increased the soil’s temperature, enhanced chlorophyll levels in the leaves of strawberry plants, and the soluble sugar and ascorbic acid content in strawberry fruit. We used high-throughput gene sequencing to monitor changes in the soil’s bacterial and fungal communities. Although BioFum significantly decreased the diversity of these communities, it increased the relative abundance of some biological control agents in the phylum Actinobacteria and the genera Pseudomonas, Bacillus and Chaetomium. An increase in these biological control agents would reduce the incidence of soil-borne pathogens and plant disease. Although strawberry marketable yield using BioFum was higher in the first three years, the decline in the final two years could be due to the accumulation of P and K which may have delayed flowering and fruiting. Methods to overcome yield losses using BioFum need to be developed in the future. Our research, however, showed that BioFum enhanced soil fertility, reduced the presence of soil pathogens, increased the relative abundance of beneficial bacteria and fungi and improved strawberry quality. Unlike chemical soil treatments that can cause pest and disease resistance when used continuously over many years, our multi-year research program on BioFum showed that this treatment provided significant benefits to the soil, plant and strawberry fruit.
Show more [+] Less [-]Impacts of different sources of animal manures on dissemination of human pathogenic bacteria in agricultural soils
2020
Li, Jinyang | Chen, Qinglin | Li, Helian | Li, Shiwei | Liu, Yinghao | Yang, Liyuan | Han, Xuemei
The human pathogenic bacteria (HPB) in animal feces may disseminate to agricultural soils with their land application as organic fertilizer. However, the knowledge about the impacts of different sources and rates of animal manures on the temporal changes of soil HPB remains limited, which hamper our ability to estimate the potential risks of their land application. Here, we constructed an HPB database including 565 bacterial strains. By blasting the 16 S rRNA gene sequences against the database we explored the occurrence and fate of HPB in soil microcosms treated with two rates of swine, poultry or cattle manures. A total of 30 HPB were detected in all of manure and soil samples. Poultry manure at the high level obviously improved the abundance of soil HPB. The application of swine manure could introduce concomitant HPB into the soils. Of which, Pseudomonas syringae pv. syringae B728a and Escherichia coli APEC O78 may deserve more attention because of their survival for a few days in manured soils and being possible hosts of diverse antibiotic resistance genes (ARGs) as revealed by co-occurrence pattern. Bayesian source tracking analysis showed that the HPB derived from swine manure had a higher contribution to soil pathogenic communities than those from poultry or cattle manures in early days of incubation. Mantel test together with variation partitioning analysis suggested that bacterial community and soil physicochemical properties were the dominant factors determining the profile of HPB and contributed 64.7% of the total variations. Overall, our results provided experimental evidence that application of animal manures could facilitate the potential dissemination of HPB in soil environment, which should arouse sufficient attention in agriculture practice and management to avoid the threat to human health.
Show more [+] Less [-]Impact of mariculture-derived microplastics on bacterial biofilm formation and their potential threat to mariculture: A case in situ study on the Sungo Bay, China
2020
Sun, Xuemei | Chen, Bijuan | Xia, Bin | Li, Qiufen | Zhu, Lin | Zhao, Xinguo | Gao, Yaping | Qu, Keming
Microplastics (MPs) pollution in the marine environment has attracted considerable global attention. However, the colonization of microorganisms on mariculture-derived MPs and their effects on mariculture remain poorly understood. In this study, the MPs (fishing nets, foams and floats) and a natural substrate, within size ranges (1–4 mm), were then incubated for 21 days in Sungo Bay (China), and the composition and diversity of bacterial communities attached on all substrates were investigated. Results showed that bacterial communities on MPs mainly originated from their surrounding seawater and sediment, with an average contribution on total MPs adherent population of 47.91% and 37.33%, respectively. Principle coordinate analysis showed that community similarity between MPs and surrounding seawater decreased with exposure time. In addition, lower average bacterial community diversity and higher relative abundances of bacteria from the genera Vibrio, Pseudoalteromonas and Alteromonas on MPs than those in their surrounding seawater and sediments indicated that MPs might enrich potential pathogens and bacteria related with carbohydrate metabolism. They are responsible for the significant differences in KEGG Orthology pathways (infectious disease and carbohydrate metabolism) between MPs and seawater. The KO pathway (Infectious Diseases) associated with MPs was also significantly higher than those with feathers in the nearshore area. MPs might be vectors for enrichment of potentially pathogenic Vibrio, and enhance the ecological risk of MPs to mariculture industry.
Show more [+] Less [-]Antibiotic resistance genes are abundant and diverse in raw sewage used for urban agriculture in Africa and associated with urban population density
2019
Bougnom, Blaise P. | McNally, Alan | Etoa, François-X. | Piddock, Laura JV.
A comparative study was conducted to (1) assess the potential of raw sewage used for urban agriculture to disseminate bacterial resistance in two cities of different size in Cameroon (Central Africa) and (2) compare the outcome with data obtained in Burkina Faso (West Africa). In each city, raw sewage samples were sampled from open-air canals in three neighbourhoods. After DNA extraction, the microbial population structure and function, presence of pathogens, antibiotic resistance genes and Enterobacteriaceae plasmids replicons were analysed using whole genome shotgun sequencing and bioinformatics. Forty-three pathogen-specific virulenc e factor genes were detected in the sewage. Eighteen different incompatibility groups of Enterobacteriaceae plasmid replicon types (ColE, A/C, B/O/K/Z, FIA, FIB, FIC, FII, H, I, N, P, Q, R, T, U, W, X, and Y) implicated in the spread of drug-resistance genes were present in the sewage samples. One hundred thirty-six antibiotic resistance genes commonly associated with MDR plasmid carriage were identified in both cities. Enterobacteriaceae plasmid replicons and ARGs found in Burkina Faso wastewaters were also present in Cameroon waters. The abundance of Enterobacteriaceae, plasmid replicons and antibiotic resistance genes was greater in Yaounde, the city with the greater population.In conclusion, the clinically relevant environmental resistome found in raw sewage used for urban agriculture is common in West and Central Africa. The size of the city impacts on the abundance of drug-resistant genes in the raw sewage while ESBL gene abundance is related to the prevalence of Enterobacteriaceae along with plasmid Enterobacteriaceae abundance associated to faecal pollution.
Show more [+] Less [-]Enantioselective effects of the chiral fungicide tetraconazole in wheat: Fungicidal activity and degradation behavior
2019
Tong, Zhou | Dong, Xu | Yang, Shasha | Sun, Mingna | Gao, Tongchun | Duan, Jinsheng | Cao, Haiqun
Tetraconazole, a chiral triazole fungicide, is widely used for the prevention of plant disease in wheat fields. However, the chirality of pesticides like tetraconazole can cause diverse biological responses. Therefore, it is important that research is conducted to investigate the enantioselective effects of chiral enantiomers in this regard. The absolute configurations of two tetraconazole enantiomers were initially confirmed by ECD (Electrostatic circular dichroism). The bioassay test showed that the fungicidal activity of (R)-(+)-tetraconazole against two pathogens (R. cerealis and F. graminearum) was approximately 1.49–1.98 times greater than that for (S)-(−)- tetraconazole. Following recovery experiments, a modified QuEchERS (Quick, easy, cheap, effective, rugged, safe) method was established using UPLC-MS/MS (ultra-performance liquid chromatography tandem mass spectrometry). The mean recoveries from plant and soil sample ranged from 78.9% to 100.5% with intraday relative standard (RSDᵣ) values of 0.8%–6.9% and interday relative standard (RSDR) values of 3.0%–5.2% respectively. The stereoselective degradation of tetraconazole in wheat meant that (S)-(−)-tetraconazole was more rapidly degraded than (R)-(+)-tetraconazole. Conversely, (R)-(+)-tetraconazole was preferentially degraded in wheat soil. These results will provide us with a greater understanding when assessing future environmental risk assessments and strategies that invoke pesticide reduction.
Show more [+] Less [-]Fate of microbial pollutants and evolution of antibiotic resistance in three types of soil amended with swine slurry
2019
Sui, Qianwen | Zhang, Junya | Chen, Meixue | Wang, Rui | Wang, Yawei | Wei, Yuansong
Swine waste is a reservoir of microbial pollutants, including pathogens, antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB); therefore, soil fertilized with swine waste is an essential pathway for the dissemination of microbial pollutants from concentrated swine farms to the public. To rationalize the intervals of swine wastes application and investigate the effects of soil type on the occurrences of microbial pollutants and antibiotic resistance, pot experiments were conducted with three typical soils, humic acrisol, calcaric cambisols and histosols, being collected from south, northwest and northeast China (soil-R, soil-Y and soil-B, respectively). The soils were amended with swine slurry, digestate and chemical fertilizers and then conducted for 172 days. The influence of microbial pollutants and antibiotic resistance in soil posed by digestate application was similar to that of the chemical fertilizers, while swine slurry posed high risks to the soil. Soil-B which had the highest organic matter and neutral pH was least influenced by the swine slurry amendment. tetG, tetM and ermF were persistent ARGs in the slurry treated soil, and their decay rates fitted to first-order kinetics in the order soil-B> soil-Y > soil-R. Putative pathogens showed strong correlations with ARGs, suggesting a risk of dissemination. The initial 43–82 days was the active phase of microbial pollution in slurry treated soil, during which time heavy metals, moisture content, total organic carbon and the microbial community were key factors contributing to changes in antibiotic resistance. Fertilization intervals of livestock wastes should be lengthened over the ARG active phase.
Show more [+] Less [-]Selenium (Se) reduces Sclerotinia stem rot disease incidence of oilseed rape by increasing plant Se concentration and shifting soil microbial community and functional profiles
2019
Liu, Kang | Cai, Miaomiao | Hu, Chengxiao | Sun, Xuecheng | Cheng, Qin | Jia, Wei | Yang, Tao | Nie, Min | Zhao, Xiaohu
Sclerotinia stem rot (SSR), a soil-borne plant disease, cause the yield loss of oilseed rape. Selenium (Se), a beneficial element of plant, improves plant resistance to pathogens, and regulates microbial communities in soil. Soil microbial communities has been identified to play an important role in plant health. We studied whether the changes in soil microbiome under influence of Se associated with oilseed rape health. SSR disease incidence of oilseed rape and soil biochemical properties were investigated in Enshi district, “The World Capital of Selenium”, and soil bacterial and fungal communities were analyzed by 16S rRNA and ITS sequencing, respectively. Results showed that Se had a strong effect on SSR incidence, and disease incidence inversely related with plant Se concentration. Besides, soil Se enhanced the microbiome diversities and the relative abundance of PGPR (plant growth promoting rhizobacteria), such as Bryobacter, Nitrospirae, Rhizobiales, Xanthobacteraceae, Nitrosomonadaceae and Basidiomycota. Furthermore, Soil Se decreased the relative abundance of pathogenic fungi, such as Olpidium, Armillaria, Coniosporium, Microbotryomycetes and Chytridiomycetes. Additionally, Se increased nitrogen metabolism, carbohydrate metabolism and cell processes related functional profiles in soil. The enrichment of Se in plants and improvement of soil microbial community were related to increased plant resistance to pathogen infection. These findings suggested that Se has potential to be developed as an ecological fungicide for biological control of SSR.
Show more [+] Less [-]