Refine search
Results 1-10 of 56
The geochemistry of strontium-90 in peatlands of the European Subarctic of Russia
2024
Lukoshkova, Anna | Yakovlev, Evgeny | Orlov, Alexander
The subject of this research is the vertical migration of strontium-90 in peatlands of the European Subarctic region of Russia. The activity level of strontium-90 has been determined in peat samples, and the physicochemical parameters of peat deposits have been studied. The specific activity of the radionuclide has been determined using beta radiometric methods with radiochemical preparation according to the methodology. The physicochemical parameters of the peat have been determined using weight-based methods according to the specified procedures. The influence of physicochemical parameters on the vertical migration of the radionuclide in peatlands has been evaluated using correlation analysis. The results have shown that the specific activity of strontium-90 in peat deposits ranges from 0.25 to 7.7 Bq/kg. The results are consistent with typical values for all soils in Russia. The average value of the specific activity of strontium-90 in peat deposits is estimated to be 1.5±0.02 Bq/kg, which is below the established minimum values and average parameters for all soils in Russia. The pathways of vertical migration of strontium-90 in peat deposits demonstrate a downward direction with various trajectories. These pathways serve as a trace of past global atmospheric radioactive fallout. The vertical migration of strontium-90 in peat is associated with the organic matter content, ash content in peatlands, and recent local atmospheric fallout from nuclear fuel facilities. The research results provide valuable information for predicting the migration of strontium-90 into aquifers under changing environmental conditions due to the Arctic's rapid climate warming.
Show more [+] Less [-]Thallium and lead variations in a contaminated peatland: A combined isotopic study from a mining/smelting area
2021
Vaněk, Aleš | Vejvodová, Kateřina | Mihaljevič, Martin | Ettler, Vojtéch | Trubač, Jakub | Vaňková, Maria | Goliáš, Viktor | Teper, Leslaw | Sutkowska, Katarzyna | Vokurková, Petra | Penížek, Vít | Zádorová, Tereza | Drábek, Ondřej
Vertical profiles of Tl, Pb and Zn concentrations and Tl and Pb isotopic ratios in a contaminated peatland/fen (Wolbrom, Poland) were studied to address questions regarding (i) potential long-term immobility of Tl in a peat profile, and (ii) a possible link in Tl isotopic signatures between a Tl source and a peat sample. Both prerequisites are required for using peatlands as archives of atmospheric Tl deposition and Tl isotopic ratios as a source proxy. We demonstrate that Tl is an immobile element in peat with a conservative pattern synonymous to that of Pb, and in contrast to Zn. However, the peat Tl record was more affected by geogenic source(s), as inferred from the calculated element enrichments. The finding further implies that Tl was largely absent from the pre-industrial emissions (>~250 years BP). The measured variations in Tl isotopic ratios in respective peat samples suggest a consistency with anthropogenic Tl (ε²⁰⁵Tl between ~ -3 and −4), as well as with background Tl isotopic values in the study area (ε²⁰⁵Tl between ~0 and −1), in line with detected ²⁰⁶Pb/²⁰⁷Pb ratios (1.16–1.19). Therefore, we propose that peatlands can be used for monitoring trends in Tl deposition and that Tl isotopic ratios can serve to distinguish its origin(s). However, given that the studied fen has a particularly complicated geochemistry (attributed to significant environmental changes in its history), it seems that ombrotrophic peatlands could be better suited for this type of Tl research.
Show more [+] Less [-]Elevated cadmium pollution since 1890s recorded by forest chronosequence in deglaciated region of Gongga, China
2020
Wang, Xun | Luo, Ji | Lin, Che-Jen | Wang, Dingyong | Yuan, Wei
Ice and sediment cores, peat bogs and tree rings are useful proxy records for reconstructing historical air pollution events. However, these indirect measurements are subject to interferences caused by environmental perturbations including global climate change. Therefore, using multiple proxy records has advantages in constraining the analytical findings. In this study, we utilized the chronological record of atmospheric deposition preserved in vegetation succession ecosystems in the deglaciated region for reconstructing historical pollution events. The rate of Cd accumulation in the forest chronosequence zone was investigated in a deglaciated area of the Tibetan Plateau. The results obtained through this novel approach are consistent with the variations of Cd concentration recorded in tree-ring, showing a 4–7 times increase of atmospheric Cd deposition from the 1890s to the early 1970s followed by a decrease from the mid-1970s–2000s. The Cd pollution record indicates that elevated atmospheric Cd release occurred in regions of Southwest China and South Asia due to the rapid industrial development until 1970 followed by coordinated efforts in controlling air emissions after mid-1970s.
Show more [+] Less [-]Long-term interactive effects of N addition with P and K availability on N status of Sphagnum
2018
Chiwa, Masaaki | Sheppard, Lucy J. | Leith, Ian D. | Leeson, Sarah R. | Tang, Y Sim | Neil Cape, J.
Little information exists concerning the long-term interactive effect of nitrogen (N) addition with phosphorus (P) and potassium (K) on Sphagnum N status. This study was conducted as part of a long-term N manipulation on Whim bog in south Scotland to evaluate the long-term alleviation effects of phosphorus (P) and potassium (K) on N saturation of Sphagnum (S. capillifolium). On this ombrotrophic peatland, where ambient deposition was 8 kg N ha−1 yr−1, 56 kg N ha−1 yr−1 of either ammonium (NH4+, Nred) or nitrate (NO3−, Nox) with and without P and K, were added over 11 years. Nutrient concentrations of Sphagnum stem and capitulum, and pore water quality of the Sphagnum layer were assessed. The N-saturated Sphagnum caused by long-term (11 years) and high doses (56 kg N ha−1 yr−1) of reduced N was not completely ameliorated by P and K addition; N concentrations in Sphagnum capitula for Nred 56 PK were comparable with those for Nred 56, although N concentrations in Sphagnum stems for Nred 56 PK were lower than those for Nred 56. While dissolved inorganic nitrogen (DIN) concentrations in pore water for Nred 56 PK were not different from Nred 56, they were lower for Nox 56 PK than for Nox 56 whose stage of N saturation had not advanced compared to Nred 56. These results indicate that increasing P and K availability has only a limited amelioration effect on the N assimilation of Sphagnum at an advanced stage of N saturation. This study concluded that over the long-term P and K additions will not offset the N saturation of Sphagnum.
Show more [+] Less [-]Distribution of lead and mercury in Ontario peatlands
2017
Talbot, Julie | Moore, Tim R. | Wang, Meng | Ouellet Dallaire, Camille | Riley, J. L. (John L.)
While considerable attention has been given to the measurement of mercury (Hg) and lead (Pb) concentrations and accumulation in detailed peat cores in central Canada, the geographic distribution and density of sampling are generally limited. Here, we use the Ontario Peatland Inventory to examine broad patterns of Hg and Pb concentration with depth, based on 338 peat cores (containing >1500 analyzed samples) from 127 bogs, fens and swamps located in southeastern, northeastern and northwestern sections of Ontario. Overall, Hg concentrations averaged 0.05 μg g⁻¹ and that of Pb averaged 10.8 μg g⁻¹. Maximum values in the top 50 cm of the profiles are 0.08 μg g⁻¹ and 26.2 μg g⁻¹ for Hg and Pb, respectively. The ratio between these values (surface) and the values from below 100 cm (background), where peat likely accumulated before 1850 and industrial activities were limited, are 2.3 and 6.6 for Hg and Pb, respectively. The highest surface:background concentration ratios are generally found in the westernmost part of the province and in the southeast for Hg and around areas that are more heavily populated for Pb. Our results show that a vast amount of Hg and Pb are stored in Ontarian peatlands, although the spatial distribution of these stores varies. The rapid decomposition of peat in a changing climate could release these pollutants to the atmosphere.
Show more [+] Less [-]Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region
2016
Oswald, Claire J. | Carey, Sean K.
In the Athabasca Oil Sands Region in northeastern Alberta, Canada, oil sands operators are testing the feasibility of peatland construction on the post-mining landscape. In 2009, Syncrude Canada Ltd. began construction of the 52 ha Sandhill Fen pilot watershed, including a 15 ha, hydrologically managed fen peatland built on sand-capped soft oil sands tailings. An integral component of fen reclamation is post-construction monitoring of water quality, including salinity, fluvial carbon, and priority pollutant elements. In this study, the effects of fen reclamation and elevated sulfate levels on mercury (Hg) fate and transport in the constructed system were assessed. Total mercury (THg) and methylmercury (MeHg) concentrations in the fen sediment were lower than in two nearby natural fens, which may be due to the higher mineral content of the Sandhill Fen peat mix and/or a loss of Hg through evasion during the peat harvesting, stockpiling and placement processes. Porewater MeHg concentrations in the Sandhill Fen typically did not exceed 1.0 ng L−1. The low MeHg concentrations may be a result of elevated porewater sulfate concentrations (mean 346 mg L−1) and an increase in sulphide concentrations with depth in the peat, which are known to suppress MeHg production. Total Hg and MeHg concentrations increased during a controlled mid-summer flooding event where the water table rose above the ground surface in most of the fen. The Hg dynamics during this event showed that hydrologic fluctuations in this system exacerbate the release of THg and MeHg downstream. In addition, the elevated SO42− concentrations in the peat porewaters may become a problem with respect to downstream MeHg production once the fen is hydrologically connected to a larger wetland network that is currently being constructed.
Show more [+] Less [-]Ammonium release from a blanket peatland into headwater stream systems
2012
Daniels, S.M. | Evans, M.G. | Agnew, C.T. | Allott, T.E.H.
Hydrochemical sampling of South Pennine (UK) headwater streams draining eroded upland peatlands demonstrates these systems are nitrogen saturated, with significant leaching of dissolved inorganic nitrogen (DIN), particularly ammonium, during both stormflow and baseflow conditions. DIN leaching at sub-catchment scale is controlled by geomorphological context; in catchments with low gully densities ammonium leaching dominates whereas highly gullied catchments leach ammonium and nitrate since lower water tables and increased aeration encourages nitrification. Stormflow flux calculations indicate that: approximately equivalent amounts of nitrate are deposited and exported; ammonium export significantly exceeds atmospheric inputs. This suggests two ammonium sources: high atmospheric loadings; and mineralisation of organic nitrogen stored in peat. Downstream trends indicate rapid transformation of leached ammonium into nitrate. It is important that low-order headwater streams are adequately considered when assessing impacts of atmospheric loads on the hydrochemistry of stream networks, especially with respect to erosion, climate change and reduced precipitation.
Show more [+] Less [-]Spatial variability of mercury and polyunsaturated fatty acids in the European perch (Perca fluviatilis) – Implications for risk-benefit analyses of fish consumption
2016
Strandberg, Ursula | Palviainen, Marjo | Eronen, Aslak | Piirainen, Sirpa | Laurén, Ari | Akkanen, Jarkko | Kankaala, Paula
This study evaluated the spatial variability of risks and benefits of consuming fish from humic and clear lakes. Mercury in fish is a potential risk for human health, but risk assessment may be confounded by selenium, which has been suggested to counterbalance mercury toxicity. In addition to the risks, fish are also rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are known to be beneficial for cardiovascular health and brain cognitive function in humans.We found that the concentrations of EPA + DHA and mercury in European perch (Perca fluviatilis) vary spatially and are connected with lake water chemistry and catchment characteristics. The highest mercury concentrations and the lowest EPA + DHA concentrations were found in perch from humic lakes with high proportion of peatland (30–50%) in the catchment. In addition, the ratio of selenium to mercury in perch muscle was ≥1 suggesting that selenium may counterbalance mercury toxicity.The observed variation in mercury and EPA + DHA content in perch from different lakes indicate that the risks and benefits of fish consumption vary spatially, and are connected with lake water chemistry and catchment characteristics. In general, consumption of perch from humic lakes exposed humans to greater risks (higher concentrations of mercury), but provided less benefits (lower concentrations of EPA + DHA) than consumption of perch from clear lakes.
Show more [+] Less [-]Modelling and mapping trace element accumulation in Sphagnum peatlands at the European scale using a geomatic model of pollutant emissions dispersion
2016
Diaz-de-Quijano, Maria | Joly, Daniel | Gilbert, Daniel | Toussaint, Marie-Laure | Franchi, Marielle | Fallot, Jean-Michel | Bernard, Nadine
Trace elements (TEs) transported by atmospheric fluxes can negatively impact isolated ecosystems. Modelling based on moss-borne TE accumulation makes tracking TE deposition in remote areas without monitoring stations possible. Using a single moss species from ombrotrophic hummock peatlands reinforces estimate quality. This study used a validated geomatic model of particulate matter dispersion to identify the origin of Cd, Zn, Pb and Cu accumulated in Sphagnum capillifolium and the distance transported from their emission sources. The residential and industrial sectors of particulate matter emissions showed the highest correlations with the TEs accumulated in S. capillifolium (0.28(Zn)-0.56(Cu)) and (0.27(Zn)-0.47(Cu), respectively). Distances of dispersion varied depending on the sector of emissions and the considered TE. The greatest transportation distances for mean emissions values were found in the industrial (10.6 km when correlating with all TEs) and roads sectors (13 km when correlating with Pb). The residential sector showed the shortest distances (3.6 km when correlating with Cu, Cd, and Zn). The model presented here is a new tool for evaluating the efficacy of air pollution abatement policies in non-monitored areas and provides high-resolution (200 × 200 m) maps of TE accumulation that make it possible to survey the potential impacts of TEs on isolated ecosystems.
Show more [+] Less [-]Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils
2016
Braaten, Hans Fredrik Veiteberg | de Wit, Heleen A.
Mercury (Hg) concentrations in freshwater fish relates to aquatic Hg concentrations, which largely derives from soil stores of accumulated atmospheric deposition. Hg in catchment soils as a source for aquatic Hg is poorly studied. Here we test if i) peatland soils produce more methylmercury (MeHg) than forest soils; ii) total Hg (THg) concentrations in top soils are determined by atmospheric inputs, while MeHg is produced in the soils; and iii) soil disturbance promotes MeHg production. In two small boreal catchments, previously used in a paired-catchment forest harvest manipulation study, forest soils and peatlands were sampled and analysed for Hg species and additional soil chemistry. In the undisturbed reference catchment, soils were sampled in different vegetation types, of varying productivity as reflected in tree density, where historical data on precipitation and throughfall Hg and MeHg fluxes were available. Upper soil THg contents were significantly correlated to throughfall inputs of Hg, i.e. lowest in the tree-less peatland and highest in the dense spruce forest. For MeHg, top layer concentrations were similar in forest soils and peatlands, likely related to atmospheric input and local production, respectively. The local peatland MeHg production was documented through significantly higher MeHg-to-THg ratios in the deeper soil layer samples. In the disturbed catchment, soils were sampled in and just outside wheeltracks in an area impacted by forest machinery. Here, MeHg concentrations and the MeHg-to-THg ratios in the upper 5 cm were weakly significantly (p = 0.07) and significantly (p = 0.04) different in and outside of the wheeltracks, respectively, suggesting that soil disturbance promotes methylation. Differences in catchment Hg and MeHg streamwater concentrations were not explained by soil Hg and MeHg information, perhaps because hydrological pathways are a stronger determinant of streamwater chemistry than small variations in soil chemistry driven by disturbance and atmospheric inputs of Hg.
Show more [+] Less [-]