Refine search
Results 1-10 of 62
Summer aspect of zooplankton and microzooperiphyton of some water course in the Republic of Srpska [Bosnia and Herzegovina]]
2001
Bobic, M. (Institut za vode Republike Srpske, Bijeljina - Republika Srpska (Bosnia and Herzegovina))
In the scope of the Program of surface water quality examinations in the Republic of Srpska (Bosnia and Herzegovina), hydrometric measurements and water quality examinations had been realized, where zooplankton and microzooperiphyton researches have been performed. Sampling were performed in the period from 6th to 20th May 2000, at 13 water courses with taken in total 21 samples. In qualitative structure of examined fauna, Rotatoria, Cladocera and Copepoda groups were treated, with ascertained in total 109 taxa from 41 genus. In qualitative structure periphyton taxa are predominant. On the basis of bioindicatory species structure it is noticed that dominant species are oligasaprobic and oligobetamesosaprobic character.
Show more [+] Less [-]Algological and saprobiological analysis of the river Dulenska [Serbia, Yugoslavia]
1997
Rankovic, B. | Simic, S. (Prirodno-matematicki fakultet, Kragujevac (Yugoslavia). Institut za biologiju)
During hydrobiological investigations of the river Dulenska (Serbia, Yugoslavia) in June 1996, algological samples were taken at this river. In the algae community are found 34 taxa from two divisio: Bacillariophyta (28) and Chlorophyta (6). While qualitative composition of the algae colony was relativelly uniformed quantitative one was changeable along the course of the Dulenska river. By saprobiological analysis, it was found that the quality of water was changing along the course of the river. At the upper and middle course of river the water belonging to the second class. At lower course of the river (below Rekovac) water quality was getfing worse and it belonging to the third class.
Show more [+] Less [-]Proportional presence of phytoplankton group in touristic part of Palic lake [Serbia, Yugoslavia]
2001
Dulic, S. | Mrkic, B. (Zavod za zastitu zdravlja, Subotica (Yugoslavia))
The analysis of the phytoplakton and phytoperiphyton communities in the Palic lake (Serbia, Yugoslavia), has been performed with aim the water quality evalution. The determining and following proportional presence of phytoplankton were in the fourth sector of lake during 1998, 1999, and 2000. During the period of investigation, the phytoplankton community was characterized by forms of Chlorophyta, Cyanophyta, Euglenophyta and Bacillariophyta. During the investigation it was perceived the change in proportional participation in the presence of the four alga group mentioned above. The most representative percent was the Chlorophyta group, with values from 44.4%, to 54.7%. The other phytoplakton group has less values of percentage in the values.
Show more [+] Less [-][Biocenoses of the river Vlasina and its tributaries [Serbia, Yugoslavia] with special reference to the bottom fauna as indicator of water quality in the spring aspect of 1996]
1997
Paunovic, M. (Institut za bioloska istrazivanja "Sinisa Stankovic", Beograd (Yugoslavia)) | Tanaskovic, M. | Kalafatic, V. | Jakovcev, D. | Martinovic-Vitanovic, V.
During one-year examination of the Vlasina river and its main tributaries, the Luznica and Gradska rivers, Serbia (Yugoslavia), in May 1996, the samples were taken for biological and chemical analysis of the watercourse in the spring aspect. Sampling was performed on the five localities of the Vlasina river, and two tribute localities near the mouth thus including all critical points where the changes of physico-chemical water parameters and qualitative/quantitative biocenoses compositions due to the increasing anthropogenic influence could occur. Data on phytoplankton, zooplankton, periphyton and benthos were analysed together with the physico-chemical water parameters in order to determine communities composition and structure and bioindicator species. Based on these results the status of aquatic environment i.e. water quality, was evaluated.
Show more [+] Less [-]Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France)
2017
Gentès, Sophie | Taupiac, Julie | Colin, Yannick | André, Jean-Marc | Guyoneaud, Remy | Institut des sciences analytiques et de physico-chimie pour l'environnement et les materiaux (IPREM) ; Université de Pau et des Pays de l'Adour (UPPA)-Institut de Chimie - CNRS Chimie (INC-CNRS)-Centre National de la Recherche Scientifique (CNRS) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; Observatoire aquitain des sciences de l'univers (OASU) ; Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Interactions Arbres-Microorganismes (IAM) ; Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL) | Ecole Nationale Supérieure de Cognitique (ENSC) ; Institut Polytechnique de Bordeaux | Laboratoire de l'intégration, du matériau au système (IMS) ; Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS) | COGNITIQUE ; Laboratoire de l'intégration, du matériau au système (IMS) ; Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS) | Conseil Général des Landes; DIRECT project (Les microorganismes sulfato-réducteurs colonisant les racines de macrophytes aquatiques: DIversité et Risques liés à la méthylation du mErcure et son transfert vers la Chaîne Trophique)
cited By 0 | International audience | Macrophyte floating roots are considered as hotspots for methylmercury (MeHg) production in aquatic ecosystems through microbial activity. Nevertheless, very little is known about periphyton bacterial communities and mercury (Hg) methylators in such ecological niches. The ability to methylate inorganic Hg is broadly distributed among prokaryotes; however, sulfate-reducers have been reported to be the most important MeHg producers in macrophyte floating roots. In the present work, the periphyton bacterial communities colonizing Ludwigia sp. floating roots were investigated through molecular methods. Among the 244 clones investigated, anaerobic microorganisms associated with the sulfur biogeochemical cycle were identified. Notably, members of the sulfur-oxidizing prokaryotes and the anoxygenic, purple non-sulfur bacteria (Rhodobacteraceae, Comamonadaceae, Rhodocyclaceae, Hyphomicrobiaceae) and the sulfate reducers (Desulfobacteraceae, Syntrophobacteraceae, and Desulfobulbaceae) were detected. In addition, 15 sulfate-reducing strains related to the Desulfovibrionaceae family were isolated and their Hg-methylation capacity was tested using a biosensor. The overall results confirmed that Hg methylation is a strain-specific process since the four strains identified as new Hg-methylators were closely related to non-methylating isolates. This study highlights the potential involvement of periphytic bacteria in Hg methylation when favorable environmental conditions are present in such ecological micro-niches.
Show more [+] Less [-]Community-level and function response of photoautotrophic periphyton exposed to oxytetracycline hydrochloride
2022
Wang, Zhenfang | Yin, Sicheng | Chou, Qingchuan | Zhou, Dong | Jeppesen, Erik | Wang, Liqing | Zhang, Wei
Periphyton is considered important for removal of organic pollutants from water bodies, but knowledge of the impacts of antibiotics on the community structure and ecological function of waterbodies remains limited. In this study, the effects of oxytetracycline hydrochloride (OTC) on the communities of photoautotrophic epilithon and epipelon and its effect on nitrogen and phosphorus concentrations in the water column were studied in a 12-day mesocosm experiment. The dynamics of nitrogen and phosphorus concentrations in the epipelon and epilithon experiment showed similar patterns. The concentrations of total nitrogen, dissolved total nitrogen, ammonium nitrogen, total phosphorus and dissolved total phosphorus in the water column increased rapidly during the initial days of exposure, after which a downward trend occurred. In the epilithon experiment, we found that the photosynthesis (Fv/Fm) and biomass of epilithon were significantly (P < 0.05) stimulated in the low concentration group. Contrarily, growth and photosynthesis (Fv/Fm) were significantly (P < 0.05) reduced in the medium and high concentration group. We further found that the photosynthetic efficiency of photoautotrophic epilithon was negatively correlated with the concentrations of nitrogen and phosphorus in the water column (P < 0.05). Principal coordinate analysis (PCoA) showed that the communities of epilithic algae in the control group and in the low concentration group were significantly (P < 0.05) different from that of the high concentration group during the initial 4 days. After 8 days’ exposure, all groups tended to be similar, indicating that epilithon showed rapid adaptability and/or resilience. Similar results were found for the relative abundance of some epilithic algae. Our findings indicate that the biofilm system has strong tolerance and adaptability to OTC as it recovered fast after an initial suppression, thus showing the important role of periphyton in maintaining the dynamic balance of nutrients with other processes in aquatic ecosystems.
Show more [+] Less [-]Differential selenium uptake by periphyton in boreal lake ecosystems
2022
Oldach, Mikayla D. | Graves, Stephanie D. | Janz, David M.
The largest and most variable step of selenium (Se) assimilation into aquatic ecosystems is the rapid uptake of aqueous Se by primary producers. These organisms can transfer more harmful forms of Se to higher trophic levels via dietary pathways, although much uncertainty remains around this step of Se assimilation due to site-specific differences in water chemistry, hydrological and biogeochemical characteristics, and community composition. Thus, predictions of Se accumulation are difficult, and boreal lake systems are relatively understudied. To address these knowledge gaps, five static-renewal field experiments were performed to examine the bioaccumulation of low, environmentally relevant concentrations of Se, as selenite, by naturally grown periphyton from multiple boreal lakes. Periphyton rapidly accumulated Se at low aqueous Se concentrations, with tissue Se concentrations ranging from 8.0 to 24.9 μg/g dry mass (dm) in the 1–2 μg Se/L treatments. Enrichment functions ranged from 2870 to 12 536 L/kg dm in the 4 μg Se/L treatment, to 11 867–22 653 L/kg dm in the 0.5 μg Se/L treatment among lakes. Periphyton Se uptake differed among the five study lakes, with periphyton from mesotrophic lakes generally accumulating more Se than periphyton from oligotrophic lakes. Higher proportions of charophytes and greater dissolved inorganic carbon in more oligotrophic lakes corresponded to less periphyton Se uptake. Conversely, increased proportions of bacillariophytes and total dissolved phosphorus in more mesotrophic lakes corresponded to greater periphyton Se uptake. Periphyton community composition and water chemistry variables were correlated, limiting interpretation of differences in periphyton Se accumulation among lakes. The results of this research provide insight on the biodynamics of Se assimilation at the base of boreal lake food webs at environmentally relevant concentrations, which can potentially inform ecological risk assessments in boreal lake ecosystems in North America.
Show more [+] Less [-]First evaluation of the periphyton recovery after glyphosate exposure
2021
Vera, María Solange | Trinelli, María Alcira
The potential environmental risk of glyphosate has promoted the need for decontamination of glyphosate-polluted water bodies. These treatments should be accompanied by studies of the recovery potential of aquatic communities and ecosystems. We evaluated the potential of freshwater periphyton to recover from glyphosate exposure using microcosms under laboratory conditions. Periphyton developed on artificial substrates was exposed to 0.4 or 4 mg l⁻¹ monoisopropylamine salt of glyphosate (IPA) for 7 days, followed by translocation to herbicide-free water. We sampled the community 1, 2 and 3 weeks after the transfer. Dry weight, ash-free dry weight, chlorophyll a, and periphyton abundances were analysed. The periphyton impacted with the lowest IPA concentration recovered most of the structural parameters within 7 days in clean water, but the taxonomic structure did not entirely recover towards the control structure. Periphyton exposed to 4 mg IPA l⁻¹ could not recover during 21 days in herbicide-free water, reaching values almost four times higher in % of dead diatoms and four times lower in ash-free dry weight concerning the control at the end of the study. Results suggest a long-lasting effect of the herbicide due to the persistence within the community matrix even after translocating periphyton to decontaminated water. We conclude that the exposure concentration modulates the recovery potential of IPA-impacted periphyton. The current research is the first to study the recovery in glyphosate-free water of periphyton exposed to the most commonly used herbicide in the world. Finally, we highlight the need for more studies focused on the recovery potential of freshwater ecosystems and aquatic communities after glyphosate contamination.
Show more [+] Less [-]Trophic dynamics of selenium in a boreal lake food web
2021
Graves, Stephanie D. | Liber, K. (Karsten) | Palace, Vince | Hecker, Markus | Doig, Lorne E. | Janz, David M.
Selenium (Se) is both an essential micronutrient and a contaminant of concern that is of particular interest in mining-influenced waterbodies in Canada. The objective of this research was to characterize the trophic dynamics of selenium along a gradient of exposure concentrations in a Canadian boreal lake ecosystem. From June 20 to August 22, 2018, six limnocorrals (littoral, ∼3000 L enclosures) were spiked with mean measured concentrations of 0.4, 0.8, 1.6, 3.4, 5.6 and 7.9 μg Se/L as selenite, and three limnocorrals served as untreated controls (background aqueous Se = 0.08–0.09 μg/L). Total Se (TSe) concentrations in water, periphyton, phytoplankton, sediment, benthic macroinvertebrates, zooplankton and female finescale dace (Phoxinus neogaeus; added on day 21 of the experiment) were measured throughout and at the end of the experiment. Total Se bioaccumulation by organisms was generally non-linear. Greater uptake by phytoplankton than periphyton was observed. Taxonomic differences in accumulation of TSe by invertebrates (Heptageniidae = Chironomidae > zooplankton) were observed as well. Fish muscle and ovary tissue TSe bioaccumulation was more variable than that at lower trophic levels and uptake patterns indicated that fish did not reach steady state concentrations. This research provides field-derived models for the uptake of Se by algae and invertebrates, and contributes to a better understanding of the dynamics of TSe bioaccumulation over a gradient of exposure concentrations in cold-water lentic systems.
Show more [+] Less [-]Cascading effects of insecticides and road salt on wetland communities
2021
Lewis, Jacquelyn L. | Agostini, Gabriela | Jones, Devin K. | Relyea, Rick A.
Novel stressors introduced by human activities increasingly threaten freshwater ecosystems. The annual application of more than 2.3 billion kg of pesticide active ingredient and 22 billion kg of road salt has led to the contamination of temperate waterways. While pesticides and road salt are known to cause direct and indirect effects in aquatic communities, their possible interactive effects remain widely unknown. Using outdoor mesocosms, we created wetland communities consisting of zooplankton, phytoplankton, periphyton, and leopard frog (Rana pipiens) tadpoles. We evaluated the toxic effects of six broad-spectrum insecticides from three families (neonicotinoids: thiamethoxam, imidacloprid; organophosphates: chlorpyrifos, malathion; pyrethroids: cypermethrin, permethrin), as well as the potentially interactive effects of four of these insecticides with three concentrations of road salt (NaCl; 44, 160, 1600 Cl⁻ mg/L). Organophosphate exposure decreased zooplankton abundance, elevated phytoplankton biomass, and reduced tadpole mass whereas exposure to neonicotinoids and pyrethroids decreased zooplankton abundance but had no significant effect on phytoplankton abundance or tadpole mass. While organophosphates decreased zooplankton abundance at all salt concentrations, effects on phytoplankton abundance and tadpole mass were dependent upon salt concentration. In contrast, while pyrethroids had no effects in the absence of salt, they decreased zooplankton and phytoplankton density under increased salt concentrations. Our results highlight the importance of multiple-stressor research under natural conditions. As human activities continue to imperil freshwater systems, it is vital to move beyond single-stressor experiments that exclude potentially interactive effects of chemical contaminants.
Show more [+] Less [-]