Refine search
Results 1-10 of 40
The contribution of detoxification pathways to pyrethroid resistance in Hyalella azteca Full text
2021
Fung, Courtney Y. | Zhu, Kun Yan | Major, Kaley | Poynton, Helen C. | Huff Hartz, Kara E. | Wellborn, Gary | Lydy, Michael J.
Chronic exposure to pyrethroid insecticides can result in strong selective pressures on non-target species in aquatic systems and drive the evolution of resistance and population-level changes. Characterizing the underlying mechanisms of resistance is essential to better understanding the potential consequences of contaminant-driven microevolution. The current study found that multiple mechanisms enhance the overall tolerance of Hyalella azteca to the pyrethroid permethrin. In H. azteca containing mutations in the voltage-gated sodium channel (VGSC), both adaptation and acclimation played a role in mitigating the adverse effects of pyrethroid exposures. Pyrethroid resistance is primarily attributed to the heritable mutation at a single locus of the VGSC, resulting in reduced target-site sensitivity. However, additional pyrethroid tolerance was conferred through enhanced enzyme-mediated detoxification. Cytochrome P450 monooxygenases (CYP450) and general esterases (GE) significantly contributed to the detoxification of permethrin in H. azteca. Over time, VGSC mutated H. azteca retained most of their pyrethroid resistance, though there was some increased sensitivity from parent to offspring when reared in the absence of pyrethroid exposure. Permethrin median lethal concentrations (LC50s) declined from 1809 ng/L in parent (P₀) individuals to 1123 ng/L in the first filial (F₁) generation, and this reduction in tolerance was likely related to alterations in acclimation mechanisms, rather than changes to target-site sensitivity. Enzyme bioassays indicated decreased CYP450 and GE activity from P₀ to F₁, whereas the VGSC mutation was retained. The permethrin LC50s in resistant H. azteca were still two orders-of-magnitude higher than non-resistant populations indicating that the largest proportion of resistance was maintained through the inherited VGSC mutation. Thus, the noted variation in tolerance in H. azteca is likely associated with inducible traits controlling enzyme pathways. A better understanding of the mechanistic and genomic basis of acclimation is necessary to more accurately predict the ecological and evolutionary consequences of contaminant-driven change in H. azteca.
Show more [+] Less [-]Trophic transfer, bioaccumulation and transcriptomic effects of permethrin in inland silversides, Menidia beryllina, under future climate scenarios Full text
2021
Derby, Andrew P. | Fuller, Neil W. | Huff Hartz, Kara E. | Segarra, Amelie | Connon, Richard E. | Brander, Susanne M. | Lydy, Michael J.
Global climate change (GCC) significantly affects aquatic ecosystems. Continual use of pyrethroid insecticides results in contamination of these ecosystems and concurrent GCC raises the potential for synergistic effects. Resistance to pyrethroids has been documented in Hyalella azteca, a common epibenthic amphipod and model organism. Resistant H. azteca can bioconcentrate elevated amounts of pyrethroids and represent a threat to consumers via trophic transfer. In the present study, a predator of H. azteca, the inland silverside (Menidia beryllina), was used to examine the impacts of GCC on pyrethroid bioaccumulation via trophic transfer from resistant prey organisms. M. beryllina were fed ¹⁴C-permethrin dosed pyrethroid-resistant H. azteca for 14 days at three salinities (6, 13 and 20 practical salinity units (PSU)) and two temperatures (18 and 23 °C). Fish were analyzed for total body residues, percent parent compound and percent metabolites. Gene expression in liver and brain tissue were evaluated to assess whether dietary bioaccumulation of permethrin would impact detoxification processes, metabolism, and general stress responses. M. beryllina bioaccumulated significant amounts of permethrin across all treatments, ranging from 39 to 557 ng g⁻¹ lipid. No statistically significant effect of temperature was found on total bioaccumulation. Salinity had a significant effect on total bioaccumulation, owing to greater bioaccumulation at 6 PSU compared to 13 and 20 PSU, which may be due to alterations to xenobiotic elimination. Permethrin bioaccumulation and the interaction with temperature and salinity elicited significant transcriptional responses in genes relating to detoxification, growth, development, and immune response. Given the increased prevalence of pesticide-resistant aquatic invertebrates, GCC-induced alterations to temperature and salinity, and the predicted increase in pesticide usage, these findings suggest trophic transfer may play an important role in pesticide bioaccumulation and effects in predatory fish.
Show more [+] Less [-]Are there fitness costs of adaptive pyrethroid resistance in the amphipod, Hyalella azteca? Full text
2018
Heim, Jennifer R. | Weston, Donald P. | Major, Kaley | Poynton, Helen | Huff Hartz, Kara E. | Lydy, Michael J.
Pyrethroid-resistant Hyalella azteca with voltage-gated sodium channel mutations have been identified at multiple locations throughout California. In December 2013, H. azteca were collected from Mosher Slough in Stockton, CA, USA, a site with reported pyrethroid (primarily bifenthrin and cyfluthrin) sediment concentrations approximately twice the 10-d LC50 for laboratory-cultured H. azteca. These H. azteca were shipped to Southern Illinois University Carbondale and have been maintained in pyrethroid-free culture since collection. Even after 22 months in culture, resistant animals had approximately 53 times higher tolerance to permethrin than non-resistant laboratory-cultured H. azteca. Resistant animals held in culture also lacked the wild-type allele at the L925 locus, and had non-synonymous substitutions that resulted in either a leucine-isoleucine or leucine-valine substitution. Additionally, animals collected from the same site nearly three years later were again resistant to the pyrethroid permethrin. When resistant animals were compared to non-resistant animals, they showed lower reproductive capacity, lower upper thermal tolerance, and the data suggested greater sensitivity to, 4, 4′-dichlorodiphenyltrichloroethane (DDT), copper (II) sulfate, and sodium chloride. Further testing of the greater heat and sodium chloride sensitivity of the resistant animals showed these effects to be unrelated to clade association. Fitness costs associated with resistance to pyrethroids are well documented in pest species (including mosquitoes, peach-potato aphids, and codling moths) and we believe that H. azteca collected from Mosher Slough also have fitness costs associated with the developed resistance.
Show more [+] Less [-]Insecticide pyrethroids in liver of striped dolphin from the Mediterranean Sea Full text
2017
Aznar-Alemany, Òscar | Giménez, Joan | de Stephanis, Renaud | Eljarrat, Ethel | Barceló, Damià
Insecticide pyrethroids in liver of striped dolphin from the Mediterranean Sea Full text
2017
Aznar-Alemany, Òscar | Giménez, Joan | de Stephanis, Renaud | Eljarrat, Ethel | Barceló, Damià
Pyrethroid pesticides were analysed in liver of striped dolphin (Stenella coeruleoalba) from the Alboran Sea (south of Spain, Mediterranean Sea). The occurrence and bioaccumulation of pyrethroid insecticides in marine mammal tissues from the northern hemisphere had never been determined before. Pyrethroids were detected in 87% of the specimens with a mean total concentration of 300 ng g-1 lw ± 932 (range 2.7–5200 ng g-1 lw). Permethrin and tetramethrin were the main contributors to the pyrethroid profiles, with enantiospecific accumulation for the first and isomer specific accumulation for the latter. Bioaccumulation of pyrethroids was unlike that of persistent organic pollutants (POPs), as pyrethroid concentrations were not correlated to the maturity stage of the specimens. Concentrations slightly increased from calves to juveniles, whereas juveniles presented similar concentrations to adults. Metabolization of pyrethroids after achieving sexual maturity might account for this pattern.
Show more [+] Less [-]Insecticide pyrethroids in liver of striped dolphin from the Mediterranean Sea Full text
2017
Aznar-Alemany, Òscar | Giménez, Joan | de Stephanis, Renaud | Eljarrat, Ethel | Barceló, Damià | Generalitat de Catalunya | Loro Parque Fundación | CEPSA | Ministerio de Ciencia e Innovación (España) | Ministerio de Economía y Competitividad (España) | Junta de Andalucía | Consejo Superior de Investigaciones Científicas [https://ror.org/02gfc7t72]
Pyrethroid pesticides were analysed in liver of striped dolphin (Stenella coeruleoalba) from the Alboran Sea (south of Spain, Mediterranean Sea). The occurrence and bioaccumulation of pyrethroid insecticides in marine mammal tissues from the northern hemisphere had never been determined before. Pyrethroids were detected in 87% of the specimens with a mean total concentration of 300 ng g lw ± 932 (range 2.7–5200 ng g lw). Permethrin and tetramethrin were the main contributors to the pyrethroid profiles, with enantiospecific accumulation for the first and isomer specific accumulation for the latter. Bioaccumulation of pyrethroids was unlike that of persistent organic pollutants (POPs), as pyrethroid concentrations were not correlated to the maturity stage of the specimens. Concentrations slightly increased from calves to juveniles, whereas juveniles presented similar concentrations to adults. Metabolization of pyrethroids after achieving sexual maturity might account for this pattern. | This work has been financially supported by the Generalitat de Catalunya (Consolidated Research Groups 2014 SGR 418 – Water and Soil Quality Unit), Loro Parque Foundation (Project Flame), CEPSA and EcoCet Project (CGL2011-25543, National Research Plan by the Ministry of Economy and Competitiveness). R. de Stephanis and J. Giménez were supported by the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of Excellence in R+D+I (SEV-2012-0262) and R. de Stephanis by the Subprograma Juan de la Cierva. Thanks are due to the Consejería de Agricultura, Pesca y Medio Ambiente and the Agencia de Medio Ambiente y Agua of the Junta de Andalucía, specially to María Soledad Vivas, Carolina Fernández and Eduardo Fernández, to Centro de Recuperación de Especies Marinas Amenazadas (CREMA), specially to Juan José Castillo, and to all the people who helped in the sample collection.
Show more [+] Less [-]Evolved pesticide tolerance in amphibians: Predicting mechanisms based on pesticide novelty and mode of action Full text
2015
Hua, Jessica | Jones, Devin K. | Mattes, Brian M. | Cothran, Rickey D. | Relyea, Rick A. | Hoverman, Jason T.
We examined 10 wood frog populations distributed along an agricultural gradient for their tolerance to six pesticides (carbaryl, malathion, cypermethrin, permethrin, imidacloprid, and thiamethoxam) that differed in date of first registration (pesticide novelty) and mode-of-action (MOA). Our goals were to assess whether: 1) tolerance was correlated with distance to agriculture for each pesticide, 2) pesticide novelty predicted the likelihood of evolved tolerance, and 3) populations display cross-tolerance between pesticides that share and differ in MOA. Wood frog populations located close to agriculture were more tolerant to carbaryl and malathion than populations far from agriculture. Moreover, the strength of the relationship between distance to agriculture and tolerance was stronger for older pesticides compared to newer pesticides. Finally, we found evidence for cross-tolerance between carbaryl and malathion (two pesticides that share MOA). This study provides one of the most comprehensive approaches for understanding patterns of evolved tolerance in non-pest species.
Show more [+] Less [-]Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: Implications for a regional risk assessment Full text
2014
Li, Huizhen | Wei, Yanli | Lydy, Michael J. | Yau, Ching
The dynamic flux of an organophosphate and four pyrethroid pesticides was determined in an air-(soil)-water-sediment system based on monitoring data from Guangzhou, China. The total air–water flux, including air–water gaseous exchange and atmospheric deposition, showed deposition from air to water for chlorpyrifos, bifenthrin and cypermethrin, but volatilization for lambda-cyhalothrin and permethrin. The transport of the pesticides from overlying water to sediment suggested that sediment acted as a sink for the pesticides. Additionally, distinct annual atmospheric depositional fluxes between legacy and current-use pesticides suggested the role of consumer usage in their transport throughout the system. Finally, pesticide toxicity was estimated from annual air–water-sediment flux within an urban stream in Guangzhou. A dynamic flux-based risk assessment indicated that inter-compartmental transport of chlorpyrifos decreased its atmospheric exposure, but had little influence on its aquatic toxicity. Instead, water-to-sediment transport of pyrethroids increased their sediment toxicity, which was supported by previously reported toxicity data.
Show more [+] Less [-]Occurrence of pyrethroids in the atmosphere of urban areas of Southeastern Brazil: Inhalation exposure and health risk assessment Full text
2021
Guida, Yago | Pozo, Karla | Carvalho, Gabriel Oliveira de | Capella, Raquel | Targino, Admir Créso | Torres, João Paulo Machado | Meire, Rodrigo Ornellas
The occurrence of organochlorine pesticides (OCPs) used decades ago for vector control in urban areas is still reported as a threat to human health. Pyrethroids emerged as a replacement for OCPs in sanitary campaigns and are currently the main insecticides used for vector control worldwide, with prominent use as agricultural and household insecticides, for veterinary and gardening purposes, and as wood preservative. This study aimed to assess the occurrence, seasonal variation, and potential sources of pyrethroids in ambient air of two urban regions of Southeastern Brazil, along with the potential health risks to local populations via inhalation exposure. Pyrethroids were sampled by polyurethane foam passive air samplers and their concentrations were determined by gas chromatography coupled with electron capture negative ionization mass spectrometry (GC/ECNI-MS). Atmospheric pyrethroid concentrations (hereinafter reported in pg m⁻³) were considerably higher than those reported by previous studies worldwide. Cypermethrin (median: 2446; range: 461–15 125) and permethrin (655; 19–10 328) accounted for 95% of the total measured pyrethroids in ambient air. The remaining fraction comprised smaller amounts of bifenthrin (46; <limit of detection (LOD)–5171), deltamethrin (58; <LOD–564), phenothrin (7; <LOD–22) and fenvalerate (0.3; <LOD–3). Bifenthrin, deltamethrin and permethrin were linked to local sources, while cypermethrin, fenvalerate and phenothrin had more prominent regional contributions. In broad terms, most pyrethroids showed no clear seasonal trend. The concentrations and hazard quotients (HQs) showed the following order of occurrence and magnitude: urban > urban-industrial > background areas. HQs increased with decreasing age group, but deterministic and probabilistic estimates did not identify direct health risks for any group. Nevertheless, since only inhalation exposure was considered in this work, other pathways should be investigated to provide a more comprehensive risk assessment of the human exposure to pyrethroids.
Show more [+] Less [-]New protocols for the selection and rearing of Metoncholaimus pristiurus and the first evaluation of oxidative stress biomarkers in meiobenthic nematodes Full text
2020
Allouche, Mohamed | Nasri, Ahmed | Harrath, Abdel Halim | Mansour, Lamjed | Alwasel, Saleh | Beyrem, Hamouda | Bourioug, Mohamed | Geret, Florence | Boufahja, Fehmi
Meiobenthic nematodes have been designated as sensitive global models in the development of biomonitoring and ecotoxicology monitoring programs howbeit the sensitivity of these organisms against oxidative stress biomarkers have never been addressed. The present study aimed to decipher this research axis after selecting and culturing a single nematode species from an entire community through original laboratory protocols. The purpose of this investigation was to change the grain size of the sediment into the immediate environment of nematodes by progressively adding a biosubstrate made from Sepia officinalis endoskeletton. At the end of the experiment, Metoncholaimus pristiurus became the unique component of the nematode species when the sediment was enriched with 80% of S. officinalis powder. After the mono-species level had been achieved, the selected species was fed on an another biosubstrate made from bodies of Porcellio scaber under the identical laboratory controlled conditions of light and temperature adopted during the selection process. Accordingly, the bioassay protocol this study layed new foundations for the study of meiobenthic nematodes in the biomarker field. Our results revealed that, in case of M. pritiurus, discernible oxidative stress responses are valid for catalase and gluthatione S-transferase. Indeed, for both enzymes, a clear increase in the activity was recorded, and the response was more reinforced when zinc and permethrin were administrated in combination. The relevance of the protocols proposed in this work parallels their global applicability to reach and maintain the monospecific level in laboratory by using biosubstrates made from animals widely distributed. It is true also that our data provided the first results in terms of biochemical biomarkers for meiobenthic nematodes and showed that the selected taxa, M. pristiurus, could be one of the first marine taxa responding early to the tested stressors, zinc and permethrin, even at very low concentrations.
Show more [+] Less [-]Multiple mitigation mechanisms: Effects of submerged plants on the toxicity of nine insecticides to aquatic animals Full text
2017
Brogan, William R. | Relyea, Rick A.
Understanding the processes that regulate contaminant impacts in nature is an increasingly important challenge. For insecticides in surface waters, the ability of aquatic plants to sorb, or bind, hydrophobic compounds has been identified as a primary mechanism by which toxicity can be mitigated (i.e. the sorption-based model). However, recent research shows that submerged plants can also rapidly mitigate the toxicity of the less hydrophobic insecticide malathion via alkaline hydrolysis (i.e. the hydrolysis-based model) driven by increased water pH resulting from photosynthesis. However, it is still unknown how generalizable these mitigation mechanisms are across the wide variety of insecticides applied today, and whether any general rules can be ascertained about which types of chemicals may be mitigated by each mechanism. We quantified the degree to which the submerged plant Elodea canadensis mitigated acute (48-h) toxicity to Daphnia magna using nine commonly applied insecticides spanning three chemical classes (carbamates: aldicarb, carbaryl, carbofuran; organophosphates: malathion, diazinon, chlorpyrifos; pyrethroids: permethrin, bifenthrin, lambda-cyhalothrin). We found that insecticides possessing either high octanol-water partition coefficients (log Kow) values (i.e. pyrethroids) or high susceptibility to alkaline hydrolysis (i.e. carbamates and malathion) were all mitigated to some degree by E. canadensis, while the plant had no effect on insecticides possessing intermediate log Kow values and low susceptibility to hydrolysis (i.e. chlorpyrifos and diazinon). Our results provide the first general insights into which types of insecticides are likely to be mitigated by different mechanisms based on known chemical properties. We suggest that current models and mitigation strategies would be improved by the consideration of both mitigation models.
Show more [+] Less [-]Does cadmium affect the toxicokinetics of permethrin in Chironomus dilutus at sublethal level? Evidence of enzymatic activity and gene expression Full text
2016
Chen, Xin | Li, Huizhen | Zhang, Junjie | Ding, Yuping | Yau, Ching
Pyrethroids and metals were simultaneously detected in aquatic environment and showed antagonistic lethality to the benthic invertebrate, Chironomus dilutus. Accelerated biotransformation of pyrethroids in organism by the presence of metals was proposed as the likely reason for the antagonism. Mechanistic explanation for the role of toxicokinetics of pyrethroids in the antagonistic interaction would help better understanding the reasons for the joint toxicity. The goal was achieved in the current study by evaluating the impact of cadmium on toxicokinetic parameters of permethrin in C. dilutus, and by explaining the interaction through quantifying the activity and gene expression of biotransformation-related enzymes. Toxicokinetic parameters were simulated using a first-order kinetic model. Bioconcentration factors and uptake and elimination rate constants for permethrin were not significantly changed with the addition of cadmium at sublethal level, neither did the activity of enzymes, including glutathione S-transferase (GST), carboxylesterase (CarE), catalase and lipid peroxidation. Yet, the activities of metabolism-related enzymes (GST and CarE) showed an elevating tendency with adding cadmium. Furthermore, the expression of metabolism-related genes, including cytochrome P450 and glutathione S-transferase genes were significantly up-regulated in C. dilutus exposed to a mixture of permethrin and cadmium compared with permethrin only. Although co-exposure to cadmium did not induce toxicokinetic changes of permethrin in C. dilutus, it did enhance the activity of metabolic enzymes which were encoded by the metabolism-related genes, suggesting an acceleration of biotransformation of permethrin to less toxic metabolites in the midges. This possibly explained the antagonistic interaction for permethrin and cadmium.
Show more [+] Less [-]