Refine search
Results 1-10 of 383
Spent waste from edible mushrooms offers innovative strategies for the remediation of persistent organic micropollutants: A review Full text
2022
Ghose, Anamika | Mitra, Sudip
Urgent and innovative strategies for removal of persistent organic micropollutants (OMPs) in soil, groundwater, and surface water are the need of the hour. OMPs detected in contaminated soils and effluents from wastewater treatment plants (WWTPs) are categorized as environmentally persistent pharmaceutical pollutants (EPPPs), and endocrine disrupting chemicals (EDCs), their admixture could cause serious ecological issues to the non-target species. As complete eradication of OMPs is not possible with the extant conventional WWTPs technology, the inordinate and reckless application of OMPs negatively impacts environmental regenerative and resilience capacity. Therefore, the cardinal focus of this review is the bioremediation of persistent OMPs through efficient application of an agro-waste, i.e. spent mushroom waste (SMW). This innovative, green, long-term strategy embedded in the circular economy, based on state of the art information is comprehensively assessed in this paper. SMW accrues ligninolytic enzymes such as laccase and peroxidase, with efficient mechanism to facilitate biodegradation of recalcitrant organic pollutants. It is vital in this context that future research should address immobilization of such enzymes to overcome quantitative and qualitative issues obstructing their widespread use in biodegradation. Therefore, dual benefit is gained from cultivating critical cash crops like mushrooms to meet the escalating demand for food resources and to aid in biodegradation. Hence, mushroom cultivation has positive environmental, social, and economic implications in developing countries like India.
Show more [+] Less [-]Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice (Oryza sativa L.) Full text
2022
Li, Yan | Zhang, Shengnan | Bao, Qiongli | Chu, Yutan | Sun, Hongyu | Huang, Yizong
Cadmium (Cd) is a potentially hazardous element with substantial biological toxicity, adversely affecting plant growth and physiological metabolism. Therefore, it is necessary to explore practical and environment-friendly approaches to reduce toxicity. Jasmonic acid (JA) is an endogenous growth regulator which helps plants defend against biological and abiotic stresses. To determine how JA help relieve Cd toxicity in rice, both laboratory and field experiments were implemented. In the seedling stage, the role of JA in mediating rice Cd tolerance was investigated via a fluorescent probe in vivo localization, Fourier Transform Infrared Spectroscopy (FTIR), and colorimetry. At the mature growth stage of rice, field experiments were implemented to research the effects of JA on the Cd uptake and translocation in rice. In the seedling stage of rice, we found that JA application increased the cell wall compartmentalization of Cd by promoting the Cd combination on chelated-soluble pectin of rice roots and inhibited Cd movement into protoplasts, thereby reducing the Cd content in the roots by 30.5% and in the shoots by 53.3%, respectively. Application of JA reduced H₂O₂ content and helped relieve Cd-induced peroxidation damage of membrane lipid by increasing the level of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione (GSH), but had no significant effect on the superoxide dismutase (SOD) activity. Additionally, field experiments showed that foliar spraying of JA inhibited rice Cd transport from the stalk and root to the grain and reduced Cd concentration in grain by 29.7% in the high-Cd fields and 28.0% in the low-Cd fields. These results improve our understanding of how JA contributes to resistance against Cd toxicity in rice plants and reduces the accumulation of Cd in rice kernels.
Show more [+] Less [-]Polystyrene nanoplastic contamination mixed with polycyclic aromatic hydrocarbons: Alleviation on gas exchange, water management, chlorophyll fluorescence and antioxidant capacity in wheat Full text
2022
Arikan, Busra | Ozfidan-Konakci, Ceyda | Yildiztugay, Evren | Turan, Metin | Cavusoglu, Halit
Polycyclic aromatic hydrocarbons (PAHs) constitute a significant environmental pollution group that reaches toxic levels with anthropogenic activities. The adverse effects of nanoplastics accumulating in ecosystems with the degradation of plastic wastes are also a growing concern. Previous studies have generally focused on the impact of single PAH or plastic fragments exposure on plants. However, it is well recognized that these contaminants co-exist at varying rates in agricultural soil and water resources. Therefore, it is critical to elucidate the phytotoxicity and interaction mechanisms of mixed pollutants. The current study was designed to comparatively investigate the single and combined effects of anthracene (ANT, 100 mg L⁻¹), fluorene (FLU, 100 mg L⁻¹) and polystyrene nanoplastics (PS, 100 mg L⁻¹) contaminations in wheat. Plants exposed to single ANT, FLU and PS treatments demonstrated decline in growth, water content, high stomatal limitations and oxidative damage. The effect of ANT + FLU on these parameters was more detrimental. In addition, ANT and/or FLU treatments significantly suppressed photosynthetic capacity as determined by carbon assimilation rate (A) and chlorophyll a fluorescence transient. The antioxidant system was not fully activated (decreased superoxide dismutase, peroxidase and glutathione reductase) under ANT + FLU, then hydrogen peroxide (H₂O₂) content (by 2.7-fold) and thiobarbituric acid reactive substances (TBARS) (by 2.8-fold) increased. Interestingly, ANT + PS and FLU + PS improved the growth, water relations and gas exchange parameters. The presence of nanoplastics recovered the adverse effects of ANT and FLU on growth by protecting the photosynthetic photochemistry and reducing oxidative stress. PAH plus PS reduced the ANT and FLU accumulation in wheat leaves. In parallel, the increased antioxidant system, regeneration of ascorbate, glutathione and glutathione redox status observed under ANT + PS and FLU + PS. These findings will provide an information about the phytotoxicity mechanisms of mixed pollutants in the environment.
Show more [+] Less [-]Response mechanisms of domoic acid in Pseudo-nitzschia multiseries under copper stress Full text
2021
Liu, Yu | Gu, Yu | Lou, Yadi | Wang, Guoguang
A complex relationship exists between copper stress and the accumulation and release of domoic acid (DA) in toxin-producing Pseudo-nitzschia cells. To clarify the changes and role of DA in this process, we exposed the toxin-producing P. multiseries and the non-toxin-producing P. pungens to copper stress (5 and 9 μM) for 96 h. Results showed that P. multiseries grew better than P. pungens under the two aforementioned copper concentrations. DA content in the cells of P. multiseries increased with increased copper stress, and the dissolved DA in the medium under the 9 μM copper treatment increased. DA addition at a 9 μM copper concentration reduced the copper content in P. multiseries cells and cell walls, but did not change the free copper ion content in culture medium. Adding DA to the medium reduced the malondialdehyde (MDA) content in the cells of P. multiseries under copper stress, DA addition also reduced the activities of catalase (CAT) and superoxide dismutase (SOD) at 5 μM Cu, and the activity of peroxidase (POD) at 9 μM Cu. This suggests that DA may not alleviate copper stress by improving the antioxidant defense system of algal cells, nor can it be complexed with copper ions in the medium to alleviate copper stress. Furthermore, the reactive oxygen species (ROS) scavenger N-tert-butyl-α-phenylnitrone (BPN) was used to study the DA accumulated in cells. The BPN addition significantly reduced the accumulation of DA in the cells under copper stress, suggesting that DA content in cells was closely related to ROS. Moreover, further experiments demonstrated that DA addition can improve the growth of P. multiseries under hydrogen peroxide stress. Our results indicate that DA alleviates P. multiseries oxidative damage when expose to copper stress.
Show more [+] Less [-]Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality Full text
2021
Wang, Gen | Wang, Li | Ma, Fang | Yang, Dongguang | You, Yongqiang
Earthworms and arbuscular mycorrhizal fungi (AMF) act synergistically in the rhizosphere and may increase host plant tolerance to Cd. However, mechanisms by which earthworm-AMF-plant partnerships counteract Cd phytotoxicity are unknown. Thus, we evaluated individual and interactive effects of these soil organisms on photosynthesis, antioxidant capacity, and essential nutrient uptake by Solanum nigrum, as well as on soil quality following Cd exposure (0–120 mg kg⁻¹). Decreases in biomass and photosynthetic activity, as well as nutrient imbalances were observed in Cd-stressed plants; however, the addition of AMF and earthworms reversed these effects. Cd exposure increased superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, whereas inoculation with Rhizophagus intraradices decreased those. Soil enzymatic activity decreased by 15–60% with increasing Cd concentrations. However, Cd-mediated toxicity was partially reversed by soil organisms. Earthworms and AMF ameliorated soil quality based on soil enzyme activity. At 120 mg kg⁻¹ Cd, the urease, catalase, and acid phosphatase activities were 1.6-, 1.4-, and 1.2-fold higher, respectively, in soils co-incubated with earthworms and AMF than in uninoculated soil. Cd inhibited shoot Fe and Ca phytoaccumulation, whereas AMF and earthworms normalized the status of essential elements in plants. Cd detoxification by earthworm-AMF-S. nigrum symbiosis was manifested by increases in plant biomass accumulation (22–117%), chlorophyll content (17–63%), antioxidant levels (SOD 10–18%, POD 9–25%, total polyphenols 17–22%, flavonoids 15–29%, and glutathione 7–61%). It also ameliorated the photosynthetic capacity, and macro- and micronutrient statuses of plants; markedly reduced the levels of malondialdehyde (20–27%), superoxide anion (29–36%), and hydrogen peroxide (19–30%); and upregulated the transcription level of FeSOD. Thus, the combined action of earthworms and AMF feasibly enhances metal tolerance of hyperaccumulating plants and improves the quality of polluted soil.
Show more [+] Less [-]Comparison of 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) and perfluorooctane sulfonate (PFOS) accumulation and toxicity in mung bean Full text
2021
Pan, Ying | Wen, Bei | Zhang, Hongna | Zhang, Shuzhen
With the regulation of perfluorooctanesulfonate (PFOS), 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA) has been used as a potential PFOS alternative in electroplating. In this study, the uptake, translocation and phytotoxicity of PFOS and 6:2 Cl-PFESA in mung bean (Vigna radiata (Linn.) Wilczek.) were investigated. The uptake kinetics of PFOS and 6:2 Cl-PFESA fit the Michaelis-Menten equation well, suggesting that the uptake is a carrier-mediated process. The root concentration factor (RCF) of 6:2 Cl-PFESA (34.55 mL g⁻¹ dw) was 1.27 times that of PFOS (27.11 mL g⁻¹ dw), and the translocation factor (TF) of 6:2 Cl-PFESA (0.177) was 1.07 times that of PFOS (0.165). Exposure to 6:2 Cl-PFESA and PFOS both resulted in the inhibition of mung bean seedling development. Treatment with 6:2 Cl-PFESA and PFOS led to the concentration-dependent elevation of malondialdehyde (MDA), carbonyl groups, and phosphorylated histone H2AX (γ-H2AX) levels in mung bean roots. The MDA and carbonyl group contents induced by 6:2 Cl-PFESA were 1.10–1.35 and 1.03–1.14 times, respectively, those of PFOS. The hydroxyl free radical (·OH) levels in mung bean roots after exposure to PFOS and 6:2 Cl-PFESA were elevated significantly, and the ·OH levels induced by 6:2 Cl-PFESA were higher than those induced by PFOS. Hydroxyl free radical levels were positively correlated with the MDA and carbonyl group contents in mung bean roots (p < 0.05). The dynamic changes in some antioxidative enzyme activities in mung bean seedlings were determined, including peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT). The results demonstrated the phytotoxicities of 6:2 Cl-PFESA and PFOS to mung bean in the early developmental stage. 6:2 Cl-PFESA is more harmful to mung beans than PFOS. The production of hydroxyl radical is the mechanism that causes the toxicity of PFOS and 6:2 Cl-PFESA toward plants.
Show more [+] Less [-]Acute effects of PAH contamination on microbial community of different forest soils Full text
2020
Picariello, Enrica | Baldantoni, Daniela | De Nicola, Flavia
Polycyclic aromatic hydrocarbons (PAHs) are hazardous organic compounds with mutagenic, genotoxic and carcinogenic properties. Although PAHs in soil can cause toxicity to microorganisms, the microbial community is able to degrade these compounds. For this reason, it is important to study acute and short-term effects of PAH contamination on soil microbial community, also to shed light on its possible exploitation in soil restoration.The effects of acute PAH contamination on the structure and metabolic activity of microbial communities in three forest (beech, holm oak, black pine) soils were studied. The soils were spiked with phenanthrene, pyrene or benzo[a]pyrene and incubated in experimental mesocosms, under controlled conditions. Enzymatic activities (laccase, total peroxidase and hydrolase), as well as microbial biomass and community structure (through phospholipid fatty acid and ergosterol analyses), were evaluated in the three soil systems 4 days after contamination and compared to no-spiked soils. In soil under holm oak, there was a stimulation of Gram+ bacteria after contamination with all the 3 PAHs, whereas in soil under pine, pyrene and phenanthrene additions mainly stimulated fungi and actinomycetes.
Show more [+] Less [-]Reduced phytotoxicity of nonylphenol on tomato (Solanum lycopersicum L.) plants by earthworm casts Full text
2020
Jiang, Lei | Wang, Bingjie | Liang, Jingqi | Pan, Bo | Yang, Yi | Lin, Yong
Concentrations as high as thousands of milligrams per kilogram (dry weight) of nonylphenol (NP), an endocrine-disrupting chemical of great concern, have been reported in soil. Soil is considered one of the primary pathways for exposure of crop plants to NP. However, there have been few studies on the toxicity of soil NP to crop plants, especially with comprehensive consideration of the application of organic fertiliser which is a common agricultural practice. In this study, tomato plants were grown in soils treated with NP in the presence and/or absence of earthworm casts (EWCs). After four weeks, we tested the physiological and biochemical responses (accumulative levels of hydrogen peroxide (H₂O₂) and superoxide anion radicals (O₂-·), total chlorophyll content, degree of membrane lipid peroxidation, activities of defence-related enzymes, and level of DNA damage) and the changes in plant growth (elongation and biomass). The growth inhibition, reactive oxygen species (H₂O₂ and O₂-·) accumulation, decrease in chlorophyll content, increase in activity of defence-related enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione S-transferase and glutathione reductase), enhancement of membrane lipid peroxidation, and DNA damage in NP-treated seedlings were clearly reversed by the intervention of EWCs. In particular, the suppressed elongation, biomass, and chlorophyll content in tomato plants exposed to NP alone were significantly restored by EWCs to even greater levels than those of the undisturbed control. In other words, EWCs could efficiently invigorate the photosynthesis of crops via up-regulating the chlorophyll content, thereby overwhelming the NP stress on plant growth. Accordingly, except for reducing the bioavailability of soil NP as reported in our previous study, EWCs could also help crop plants to cope with NP stress by strengthening their stress resistance ability. Our findings are of practical significance for the formulation of strategies to relieve the negative effects of soil NP on crop growth.
Show more [+] Less [-]Pilot-scale study on the effects of cyanobacterial blooms on Vallisneria natans and biofilms at different phosphorus concentrations Full text
2020
Li, Qi | Gu, Peng | Luo, Xin | Zhang, Hao | Huang, Suzhen | Zhang, Jibiao | Zheng, Zheng
Cyanobacterial blooms cause potential risk to submerged macrophytes and biofilms in eutrophic environments. This pilot-scale study investigated the growth, oxidative responses, and detoxification activity of aquatic plants in response to cyanobacterial blooms under different phosphorus concentrations. Variations of extracellular polymeric substances (EPSs) and microbial community composition were also assessed. Results showed that the biomass of Vallisneria natans increased with exposure to cyanobacterial blooms at higher phosphorous concentrations (P > 0.2 mg L⁻¹). The amount of microcystin compounds (MC-LR) released into the water and the accumulation of MC-LR into both plant tissue and biofilms changed according to the phosphorus concentration. Furthermore, a certain degree of oxidative stress was induced in the plants, as evidenced by increased activity of superoxide dismutase, catalase, and peroxidase, as well as increased malondialdehyde concentrations; significant differences were also seen in acid phosphatase and glutathione S-transferase activities, as well as in glutathione concentrations. Together, these responses indicate potential mechanisms of MC-LR detoxification. Broader α-D-glucopyranose polysaccharides (PS) increased with increasing phosphorous and aggregated into clusters in biofilm EPS in response to the cyanobacterial blooms. In addition, alterations were seen in the abundance and structure of the microbial communities present in exposed biofilms. These results demonstrate that cyanobacterial blooms under different concentrations of phosphorus can induce differential responses, which can have a significant impact on aquatic ecosystems.
Show more [+] Less [-]The promotion effects of silicate mineral maifanite on the growth of submerged macrophytes Hydrilla verticillata Full text
2020
Liu, Yunli | Han, Fan | Bai, Guoliang | Kong, Lingwei | Liu, Zisen | Wang, Chuan | Liu, Biyun | He, Feng | Wu, Zhenbin | Zhang, Yi
The effects of maifanite on the physiological and phytochemical process of submerged macrophytes Hydrilla verticillate (H.verticillata) were investigated for the first time in the study. The growth index: plant biomass, root length, plant height and leaf spacing, and physiological and phytochemical indexes: chlorophyll, soluble protein, malondialdehyde (MDA), peroxidase (POD), superoxide dismutase (SOD) content and vitality of the roots of H.verticillata were tested. The results found that maifanite can significantly promote the growth of H.verticillata. The modified maifanite were more conducive to plant growth compared with the raw maifanite, and the MM1 group had the best growth promoting effect. The physiological and phytochemical indexes showed that maifanite can delay the aging process of H.verticillata (P < 0.05). The possible reasons for promoting H.verticillata growth were that maifanite can provide excellent propagation conditions for plant rhizosphere microorganisms, contains abundant major and microelements, and improve the sediment microenvironment. This study may provide a technique for the further application of maifanite in the field of ecological restoration.
Show more [+] Less [-]