Refine search
Results 1-10 of 434
Evaluating the application of wastewater in different soil depths (Case study: Zabol) Full text
2017
Shojaee, Saeed | Zehtabian, Gholamreza | Jafary, Mohammad | Khosravi, Hasan
Water scarcity, its necessity in food production, and environmental protection in the world have forced human beings to seek new water sources. Nowadays, application of unconventional water resources (wastewater) has been proposed in countries facing the crisis of water resources shortage; however, a few studies have dealt with this issue. The present study has evaluated the changes in the elements of the soil, irrigated with wastewater. For so doing, an experiment has been conducted on a randomized complete block design with three replications. Soil samples have been collected from the studied regions at two depths of 0-30 cm and 30-60 cm and the studied parameters have included sodium, total calcium, magnesium, some acidity, and electrical conductivity of the soil. Three regions of study (namely no irrigation, irrigation with treated wastewater, and irrigation with river waters) have been taken into consideration. Results have shown increased calcium, magnesium, and pH of the effluent from Zabol Wastewater Treatment Plant compared to the control; however, electrical conductivity and chloride have decreased in wastewater-irrigated soil. The electrical conductivity in the surface layer of wastewater samples, treated with an amount of 2.25 (ds/m), has had the most significant difference to the control and other treatments. It can be concluded that wastewater increases some soil properties, contributing to its restoration.
Show more [+] Less [-]Assessment of effective operational parameters on dyeing wastewater treatment by electrocoagulation process Full text
2017
Shahriari, Toktam | Saeb, Bahareh
A wide range of chemicals and dyes are being used in textile industry, and are often found in the wastewater produced. This study attempts to investigate the reduction of COD, TSS, and dye in effluents from the dyeing and washing unit of textile industry, using electrocoagulation process. The reactor is equipped with 10 iron electrodes, connected to a direct current (DC) source in a monopolar electrode configuration. In each stage of the experiment, 2.5 l of the effluent enters the reactor and the effects of a number of important operational parameters such as voltage, pH, and reaction time is studied on the removal of COD, TSS, and dye parameters. Results show that the optimum operational conditions are reaction time of 120 min, voltage of 30 V, and pH of 7, which reduces COD, TSS, and dye by 87%, 91%, and 98%, respectively. Therefore, it has been concluded that the efficiency of pollutants removal from the wastewater improves as voltage and reaction time are increased.
Show more [+] Less [-]Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland Full text
2017
Wu, Suqing | He, Shengbing | Zhou, Weili | Gu, Jianya | Huang, Jungchen | Gao, Lei | Zhang, Xu
Decomposition of aquatic macrophytes usually generates significant influence on aquatic environment. Study on the aquatic macrophytes decomposition may help reusing the aquatic macrophytes litters, as well as controlling the water pollution caused by the decomposition process. This study verified that the decomposition processes of three different kinds of aquatic macrophytes (water hyacinth, hydrilla and cattail) could exert significant influences on water quality of the receiving water, including the change extent of pH, dissolved oxygen (DO), the contents of carbon, nitrogen and phosphorus, etc. The influence of decomposition on water quality and the concentrations of the released chemical materials both followed the order of water hyacinth > hydrilla > cattail. Greater influence was obtained with higher dosage of plant litter addition. The influence also varied with sediment addition. Moreover, nitrogen released from the decomposition of water hyacinth and hydrilla were mainly NH3-N and organic nitrogen while those from cattail litter included organic nitrogen and NO3⁻-N. After the decomposition, the average carbon to nitrogen ratio (C/N) in the receiving water was about 2.6 (water hyacinth), 5.3 (hydrilla) and 20.3 (cattail). Therefore, cattail litter might be a potential plant carbon source for denitrification in ecological system of a constructed wetland.
Show more [+] Less [-]Comparative adsorption of Pb2+ and Cd2+ by cow manure and its vermicompost Full text
2017
Zhu, Weiqin | Du, Wenhui | Shen, Xuyang | Zhang, Hangjun | Ding, Ying
Organic waste has great potential for use as an amendment to immobilize heavy metals in the environment. Therefore, this study investigates various properties of cow manure (CM) and its derived vermicompost (CV), including the pH, cationic exchangeable capacity (CEC), elemental composition and surface structure, to determine the potential of these waste products to remove Pb2+ and Cd2+ from solution. The results demonstrate that CV has a much higher pH, CEC and more irregular pores than CM and is enriched with minerals and ash content but has a lower C, H, O and N content. Adsorption isotherms studies shows that the adsorption of Pb2+ and Cd2+ onto either CM or CV follows a Langmuir model and presents maximum Pb2+ and Cd2+ adsorption capacities of 102.77 mg g−1 and 38.11 mg g−1 onto CM and 170.65 and 43.01 mg g−1 onto CV, respectively. Kinetic studies show that the adsorption of Pb2+ onto CM and CV fits an Elovich model, whereas the adsorption of Cd2+ onto CM and CV fits a pseudo-second-order model. Desorption studies indicate that CV is more effective than CM in removing Pb2+ and Cd2+. FTIR analysis demonstrates that the adsorption of Pb2+ and Cd2+ onto CM mainly depends on existed aliphatic alcohol, aromatic acid as well as new produced carbonates, whereas that onto CV may be contributed by the existed aliphatic alcohol, aromatic acids as well as some carbonates and phosphates. Thus, vermicomposting disposal of cow manure with destination mineral addition may broaden the way of its recycle and environmental usage.
Show more [+] Less [-]Effects of simulated acid rain on soil fauna community composition and their ecological niches Full text
2017
Wei, Hui | Liu, Wen | Zhang, Jiaen | Qin, Zhong
Acid rain is one of the severest environmental issues globally. Relative to other global changes (e.g., warming, elevated atmospheric [CO2], and nitrogen deposition), however, acid rain has received less attention than its due. Soil fauna play important roles in multiple ecological processes, but how soil fauna community responds to acid rain remains less studied. This microcosm experiment was conducted using latosol with simulated acid rain (SAR) manipulations to observe potential changes in soil fauna community under acid rain stress. Four pH levels, i.e., pH 2.5, 3.5, 4.5, and 5.5, and a neutral control of pH 7.0 were set according to the current pH condition and acidification trend of precipitation in southern China. As expected, we observed that the SAR treatments induced changes in soil fauna community composition and their ecological niches in the tested soil; the treatment effects tended to increase as acidity increased. This could be attributable to the environmental stresses (such as acidity, porosity and oxygen supply) induced by the SAR treatments. In addition to direct acidity effect, we propose that potential changes in permeability and movability of water and oxygen in soils induced by acid rain could also give rise to the observed shifts in soil fauna community composition. These are most likely indirect pathways of acid rain to affect belowground community. Moreover, we found that nematodes, the dominating soil fauna group in this study, moved downwards to mitigate the stress of acid rain. This is probably detrimental to soil fauna in the long term, due to the relatively severer soil conditions in the deep than surface soil layer. Our results suggest that acid rain could change soil fauna community and the vertical distribution of soil fauna groups, consequently changing the underground ecosystem functions such as organic matter decomposition and greenhouse gas emissions.
Show more [+] Less [-]Molecular investigation on the binding of Cd(II) by the binary mixtures of montmorillonite with two bacterial species Full text
2017
Du, Huihui | Qu, ChenChen | Liu, Jing | Chen, Wenli | Cai, Peng | Shi, Zhihua | Yu, Xiao-Ying | Huang, Qiaoyun
Bacteria–phyllosilicate complexes are commonly found in natural environments and are capable of immobilizing trace metals. However, the molecular binding mechanisms of heavy metals to these complex aggregates still remain poorly understood. This study investigated Cd adsorption on Gram-positive Bacillus subtilis, Gram-negative Pseudomonas putida and their binary mixtures with montmorillonite using surface complexation model, Cd K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and isothermal titration calorimetry (ITC). We have shown that larger amounts of Cd are adsorbed by B. subtilis than by P. putida at pH<∼6, and Cd sorption that binding to phosphate groups plays a more important role in P. putida than in B. subtilis. This remind us that we should consider the microbe species when predict the biochemical behavior of trace metals in microbe-bearing environments. The observed Cd adsorption on the binary bacteria–clay composites was more than that predicted based on the component additivity approach. When taking bacteria–clay (1:1 mass ratio) as a representative example, an approximately 68%:32% metal distribution between the bacterial and mineral fraction was found. Both the EXAFS and ITC fits showed that the binding stoichiometry for Cd-carboxyl/phosphate was smaller in the binary mixtures than that in pure bacteria. We proposed that the significant deviations were possibly due to the physical-chemical interaction between the composite fractions that might reduce the agglomeration of the clay grains, increase the negative surface charges, and provide additional bridging of metals ions between bacterial cells and clays.
Show more [+] Less [-]Effects of titanium dioxide (TiO2) nanoparticles on the photodissolution of particulate organic matter: Insights from fluorescence spectroscopy and environmental implications Full text
2017
Hu, Bin | Wang, Peifang | Hou, Jun | Wang, Chao | Qian, Jin | Zhang, Nannan | Yuan, Qiusheng
Widely used titanium dioxide (TiO2) nanoparticles are likely to accumulate ultimately in sediments and potentially pose a risk to water ecosystems. This study evaluated the effect of TiO2 nanoparticles on the photodissolution of particulate organic matter (POM) through fluorescence spectroscopy. Excitation-emission matrices and parallel factor analyses revealed that the fluorescent characteristics of produced dissolved organic matter (DOM) during photodissolution of suspended sediment and synthetic particulate organic matter (SPOM) were primarily humic-like. SPOM particles appeared to simulate well the photodissolution of suspended sediment. Quasi-complete increases in fluorescence intensity and chromophoric DOM (CDOM) abundance were reached after 90, 60, and 50 min irradiation for TiO2 concentrations of 0, 2, and 5 mg L−1, respectively. The faster increment of fluorescence intensity and CDOM abundance indicated the photocatalytic dissolution of SPOM, as opposite charges between TiO2 and SPOM at pH = 4 favored the adsorption of TiO2 onto SPOM. For sediments, the CDOM abundance and fluorescence intensity decreased with increasing TiO2 concentration, resulting from the photocatalytic degradation of photoproduced DOM from sediments. These results demonstrated that pH plays an important role in the photocatalytic dissolution of POM by TiO2. Therefore, appropriate pH controls should be implemented when TiO2 are used to treat sediments contaminated with organic pollutants. Finally, with increasing use of TiO2, its accumulation in sediments may affect the fate of carbon, nutrients, and heavy metals in shallow-water ecosystems.
Show more [+] Less [-]Insights into the subsurface transport of As(V) and Se(VI) in produced water from hydraulic fracturing using soil samples from Qingshankou Formation, Songliao Basin, China Full text
2017
Chen, Season S. | Sun, Yuqing | Tsang, Daniel C.W. | Graham, Nigel J.D. | Ok, Yong Sik | Feng, Yujie | Li, Xiang-Dong
Produced water is a type of wastewater generated from hydraulic fracturing, which may pose a risk to the environment and humans due to its high ionic strength and the presence of elevated concentrations of metals/metalloids that exceed maximum contamination levels. The mobilization of As(V) and Se(VI) in produced water and selected soils from Qingshankou Formation in the Songliao Basin in China were investigated using column experiments and synthetic produced water whose quality was representative of waters arising at different times after well creation. Temporal effects of produced water on metal/metalloid transport and sorption/desorption were investigated by using HYDRUS-1D transport modelling. Rapid breakthrough and long tailings of As(V) and Se(VI) transport were observed in Day 1 and Day 14 solutions, but were reduced in Day 90 solution probably due to the elevated ionic strength. The influence of produced water on the hydrogeological conditions (i.e., change between equilibrium and non-equilibrium transport) was evidenced by the change of tracer breakthrough curves before and after the leaching of produced water. This possibly resulted from the sorption of polyacrylamide (PAM (-CH2CHCONH2-)n) onto soil surfaces, through its use as a friction reducer in fracturing solutions. The sorption was found to be reversible in this study. Minimal amounts of sorbed As(V) were desorbed whereas the majority of sorbed Se(VI) was readily leached out, to an extent which varied with the composition of the produced water. These results showed that the mobilization of As(V) and Se(VI) in soil largely depended on the solution pH and ionic strength. Understanding the differences in metal/metalloid transport in produced water is important for proper risk management.
Show more [+] Less [-]Development of atmospheric acid deposition in China from the 1990s to the 2010s Full text
2017
Yu, Haili | He, Nianpeng | Wang, Qiufeng | Zhu, Jianxing | Gao, Yang | Zhang, Yunhai | Jia, Yanlong | Yu, Guirui
Atmospheric acid deposition is a global environmental issue. China has been experiencing serious acid deposition, which is anticipated to become more severe with the country's economic development and increasing consumption of fossil fuels in recent decades. We explored the spatiotemporal variations of acid deposition (wet acid deposition) and its influencing factors by collecting nationwide data on pH and concentrations of sulfate (SO4²⁻) and nitrate (NO3⁻) in precipitation between 1980 and 2014 in China. Our results showed that average precipitation pH values were 4.59 and 4.70 in the 1990s and 2010s, respectively, suggesting that precipitation acid deposition in China has not seriously worsened. Average SO4²⁻ deposition declined from 40.54 to 34.87 kg S ha⁻¹ yr⁻¹ but average NO3⁻ deposition increased from 4.44 to 7.73 kg N ha⁻¹ yr⁻¹. Specifically, the area of severe precipitation acid deposition in southern China has shrunk to some extent as a result of controlling the pollutant emissions; but the area of moderate precipitation acid deposition has expanded in northern China, associated with rapid industrial and transportation development. Furthermore, we found significant positive correlations between precipitation acid deposition, energy consumption, and rainfall. Our findings provide a relatively comprehensive evaluation of the spatiotemporal dynamics of precipitation acid deposition in China over past three decades, and confirm the idea that strategies implemented to save energy and control pollutant emissions in China have been effective in alleviating precipitation acid deposition. These findings might be used to demonstrate how developing countries could achieve economic development and environmental protection through the implementation of advanced technologies to reduce pollutant emissions.
Show more [+] Less [-]Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ) in the soil leachate by nZVI/Ni bimetal material Full text
2017
Zhu, Fang | Li, Luwei | Ren, Wentao | Deng, Xiaoqiang | Liu, Tao
Nano zero valent iron/Ni bimetal materials (nZVI/Ni) were prepared by borohydride reduction method to remediate toxic Cr(Ⅵ) contaminated in soil leachate. nZVI/Ni was characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). Different factors including pH value of soil leachate, reaction time, temperature, humic acid and coexisting anions (SO42-, NO3−, HCO3−, CO32-) were studied to analyze the reduction rate. Results showed that the reduction rate of Cr(Ⅵ) could reach 99.84% under the condition of pH of 5 and temperature of 303 K. pH values and temperature of soil leachate had a significant effect on the reduction efficiency, while humic acid had inhibition effect for the reduction reaction. SO42-, HCO3− and CO32- had inhibition effect for reduction rate, while NO3− barely influenced the reduction process of nZVI/Ni. Moreover, Langumir-Hinshelwood first order kinetic model was studied and could describe the reduction process well. The thermodynamic studies indicated that the reaction process was endothermic and spontaneous. Activation energy was 143.80 kJ mol−1, showing that the reaction occurred easily. Therefore, the study provides an idea for nZVI/Ni further research and practical application of nZVI/Ni in soil remediation.
Show more [+] Less [-]