Refine search
Results 1-10 of 574
Efficacy of Photocatalytic HEPA Filter on Reducing Bacteria and Fungi Spores in the Presence of UVC and UVA Lights
2021
Mousavi, Tahereh | Golbabaei, Farideh | Kohneshahri, Mehrdad Helmi | Pourmand, Mohammad Reza | Rezaie, Sassan | Hosseini, Mostafa | Karimi, Ali
The Indoor Air Quality (IAQ) of a hospital is very important to properly protect both patients and the staff against hospital infections. The present study aims at evaluating the efficiency of photocatalytic filters as well as the impact of important factors such as the type of UV wavelength (UVC, UVA) with different intensities and loading rates of TiO2 in HEPA Filters on reducing airborne microorganisms. For so doing, it has prepared photocatalytic filters by dipping them into 2% and 4% titanium dioxide suspensions as low and high loading, respectively. The experiments have been carried out on four species’ microorganisms, namely Epidermidis, Subtilis, Niger, and Penicillium. Fungi and bacteria suspensions have been prepared with concentrations of 106, 107 CFU/m3, respectively. In terms of microorganism removal, the efficiency of HEPA filters in both types of TiO2 loading and UVC and UVA radiations with two intensities at three times intervals (60, 90, and 120 min) have been investigated. Results show that lower penetration microorganism belong to PCO (TiO2 + UV), compared to photolysis (UV alone) at all intervals of UV radiation. TiO2 loading has no significant effect on percentage removal in all microorganisms. The percentage penetration of microorganisms under UVC radiation is lower than UVA radiation. Also, increasing the radiation intensity in both types of UV shows that it has higher effectiveness for removing bacteria and fungi. Therefore, the use of photocatalytic HEPA filters with UVC radiation can play an influential role in reduction of the microorganisms in different places such as hospitals, cleanrooms, etc.
Show more [+] Less [-]New insight into transformation of tetracycline in presence of Mn(II): Oxidation versus photolysis
2022
Ouyang, Zhuozhi | Lei, Fadan | Hu, Endian | Li, Shuxing | Yao, Qian | Guo, Xuetao
Tetracycline (TC) and Mn(II) is a common antibiotic and metal ion respectively. Nevertheless, literatures involving in the effects of Mn(II) on TC transformation are still insufficient. In this study, the kinetic experiment, spectral analysis, complexation experiment and electrochemical analysis, theoretical calculation and products detection were carried out to probe into oxidation and photolysis of TC with Mn(II). Mn(II) greatly accelerated TC oxidation, preferably tending to complex with TC at O10 – O12 or O2 – O3 site. There were a TC-Mn(II)/TC-Mn(III) redox couple and electron transfer process. Conversely, Mn(II) inhibited photolysis of TC. The photolysis of excited TC could compete with energy dissipation reactions. The electron transfer and complexation reaction easily made excited TC energy transfer, thus slowing down photolysis process. During the TC transformation, the intensity of functional groups was significantly decreased. Simultaneously, the degradation pathways mainly included eight reactions. It is a very interesting and probably overlooked phenomenon, which identifies new transformation of TC with Mn(II). This study helps to further understand fate and environmental behavior of antibiotics and metal ion.
Show more [+] Less [-]Effect of fulvic acid concentration levels on the cleavage of piperazinyl and defluorination of ciprofloxacin photodegradation in ice
2022
Li, Zhuojuan | Dong, Deming | Zhang, Liwen | Li, Yanchun | Guo, Zhiyong
Ice is an important physical and chemical sink for various pollutants in cold regions. The photodegradation of emerging fluoroquinolone (FQ) antibiotic contaminants with dissolved organic matter (DOM) in ice remains poorly understood. Here, the photodegradation of ciprofloxacin (CIP) and fulvic acid (FA) in different proportions as representative FQ and DOM in ice were investigated. Results suggested that the photodegradation rate constant of CIP in ice was 1.9 times higher than that in water. When CFA/CCIP ≤ 60, promotion was caused by FA sensitization. FA increased the formation rate of cleavage in the piperazine ring and defluorination products. When 60 < CFA/CCIP < 650, the effect of FA on CIP changed from promoting to inhibiting. When 650 ≤ CFA/CCIP ≤ 2600, inhibition was caused by both quenching effects of 143.9%–51.3% and light screening effects of 0%–48.7%. FA inhibited cleavage in the piperazine ring for CIP by the scavenging reaction intermediate of aniline radical cation in ice. When CFA/CCIP > 2600, the light screening effect was greater than the quenching effect. This work provides new insights into how DOM affects the FQ photodegradation with different concentration proportions, which is beneficial for understanding the environmental behaviors of fluorinated pharmaceuticals in cold regions.
Show more [+] Less [-]Visible light driven exotic p (CuO) - n (TiO2) heterojunction for the photodegradation of 4-chlorophenol and antibacterial activity
2021
Gnanasekaran, Lalitha | Pachaiappan, Rekha | Kumar, P Senthil | Hoang, Tuan K.A. | Rajendran, Saravanan | Durgalakshmi, D. | Soto-Moscoso, Matias | Cornejo-Ponce, Lorena | Gracia, F.
The treatment of industrial waste and harmful bacteria is an important topic due to the release of toxins from the industrial pollutants that damage the water resources. These harmful sources frighten the life of every organism which was later developed as the carcinogenic and mutagenic agents. Therefore, the current study focuses on the breakdown or degradation of 4-chlorophenol and the antibacterial activity against Escherichia coli (E. coli). As a well-known catalyst, pure titanium-di-oxide (TiO₂) had not shown the photocatalytic activity in the visible light region. Hence, band position of TiO₂ need to be shifted to bring out the absorption in the visible light region. For this purpose, the n-type TiO₂ nanocrystalline material's band gap got varied by adding different ratios of p-type CuO. The result had appeared in the formation of p (CuO) – n (TiO₂) junction synthesized from sol-gel followed by chemical precipitation methods. The optical band gap value was determined by Kubelka-Munk (K-M) plot through UV–Vis diffusive reflectance spectroscopy (DRS). Further, the comprehensive mechanism and the results of photocatalytic and antibacterial activities were discussed in detail. These investigations are made for tuning the TiO₂ catalyst towards improving or eliminating the existing various environmental damages.
Show more [+] Less [-]Comparative observation of atmospheric nitrous acid (HONO) in Xi'an and Xianyang located in the GuanZhong basin of western China
2021
Li, Weiran | Tong, Shengrui | Cao, Junji | Su, Hang | Zhang, Wenqian | Wang, Lili | Jia, Chenhui | Zhang, Xinran | Wang, Zhen | Chen, Meifang | Ge, Maofa
HONO is an important component of reactive nitrogen (Nᵣ) and precursors of OH radical. However, the source and removal of HONO are not clear. Here, measurements of HONO (May 18–31, 2018) were conducted in Xi'an and Xianyang simultaneously for the first time. The relationship between HONO and other Nᵣ (such as NO and NO₂) in two cities was analyzed. The mixing ratio of HONO in Xi'an was 1.2 ± 0.8 ppbv, and that in Xianyang was 1.2 ± 1.1 ppbv. The nighttime HONO mixing ratio was higher in Xianyang, while the daytime HONO was higher in Xi'an. Compared with the contribution from heterogeneous process of NO₂, direct emissions and homogeneous processes (NO + OH) were less important for nocturnal HONO formation in these two cities. The relative contribution of heterogeneous process in Xianyang was more important than that in Xi'an. The reaction of NO₂ upon aerosols surface was identified as an important source of HONO for two sites. The conversion of NO₂ on the other surfaces might attend the heterogeneous formation of HONO in Xianyang site. Daytime HONO budget analysis indicated that there was an additional unknown formation process of HONO at two sites. The net OH production rate from HONO (from 08:00 to 17:00) was 1.6 × 10⁷ and 1.3 × 10⁷ molecule/(cm³ s) for Xian and Xianyang, 5.2 and 3.5 times higher than from O₃ photolysis. Besides, a dust storm appeared during this observation period, and the impact of local emission and transport processes was separately analyzed. The sources, characteristics, and effects of HONO identified in this study laid a foundation for further research on HONO and air pollution in the Guanzhong area.
Show more [+] Less [-]Aqueous photodecomposition of the emerging brominated flame retardant tetrabromobisphenol S (TBBPS)
2021
Xu, Haiyan | Li, Yueyue | Lu, Jiaxin | Lu, Junhe | Zhou, Lei | Chovelon, Jean-Marc | Ji, Yuefei
As an emerging brominated flame retardant (BFR), tetrabromobisphenol S (TBBPS) has been frequently detected in the environmental media and organisms. Knowledges on the transformation and fate of TBBPS in both environment and engineering systems are essential to its ecological risk assessment. Herein, we reported the photochemical decomposition of TBBPS in aqueous solution upon 254 nm ultraviolet irradiation (UV₂₅₄). Results show that TBBPS was highly photoreactive, most likely due to the presence of four ortho-bromine substituents. The molar absorption coefficient and quantum yield of TBBPS were found to be pH-dependent, with the monoanionic form being most photoreactive. A series of photoproducts were identified by solid phase extraction (SPE) combined with liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI(+)-MS/MS. The photolysis of TBBPS likely proceeded through photonucleophilic substitution, photoreductive debromination, and β-scission reactions. A ketocarbene, possibly derived from the lower lying excited triplet state, was proposed to be involved in the photolysis of TBBPS. Ion chromatography analysis revealed that debromination occurred quickly, and the yield of bromide (Br⁻) approached 100% after 90 min irradiation. The presence of SRNOM and MRNOM inhibited the photodegradation rate of TBBPS, which is likely due to the light-screening and physical quenching effects of natural organic matter (NOM). Our results reveal that photolysis is an important process for the attenuation of TBBPS in aquatic system; however, naturally occurring species such as NOM can appreciably retard the decay of TBBPS.
Show more [+] Less [-]Indirect photodegradation of sulfadiazine in the presence of DOM: Effects of DOM components and main seawater constituents
2021
Bai, Ying | Zhou, Yanlei | Che, Xiaowei | Li, Conghe | Cui, Zhengguo | Su, Rongguo | Qu, Keming
The presence of pharmaceuticals and personal care products in coastal waters has caused concern over the past decade. Sulfadiazine (SD) is a very common antibiotic widely used as human and fishery medicine, and dissolved organic matter (DOM) plays a significant role in the indirect photodegradation of SD; however, the influence of DOM compositions on SD indirect photodegradation is poorly understood. The roles of reactive intermediates (RIs) in the indirect photolysis of SD were assessed in this study. The reactive triplet states of DOM (³DOM∗) played a major role, whereas HO· and ¹O₂ played insignificant roles. DOM was divided into four components using excitation-emission matrix spectroscopy combined with parallel factor analysis. The components included three allochthonous humic-like components and one autochthonous humic-like component. The allochthonous humic-like components contributed more to RIs generation and SD indirect photolysis than the autochthonous humic-like component. A significant relationship between the indirect photodegradation of SD and the decay of DOM fluorescent components was found (correlation coefficient, 0.99), and the different indirect photodegradation of SD in various DOM solutions might be ascribed to the different components of DOM. The indirect photolysis rate of SD first increased and then decreased with increasing pH. SD photolysis was enhanced by low salinity but remained stable at high salinity. The increased carbonate concentration inhibited SD photolysis, whereas nitrate showed almost no effect in this study.
Show more [+] Less [-]Solar photocatalytic degradation of ibuprofen with a magnetic catalyst: Effects of parameters, efficiency in effluent, mechanism and toxicity evolution
2021
Gong, Han | Zhu, Wei | Huang, Yumei | Xu, Lijie | Chen, Meijuan | Yan, Muting
The environmental-friendly photocatalytic process with a magnetic catalyst CoFe₂O₄/TiO₂ mediated by solar light for ibuprofen (IBP) degradation in pure water, wastewater effluent and artificial seawater was investigated systematically. The study aims to reveal the efficiency, the mechanism and toxicity evolution during IBP degradation. Hydroxyl radicals and photo-hole (h⁺) were found to contribute to the IBP decay. The presence of SO₄²⁻ showed no significant effect, while NO₃⁻ accelerated the photodegradation, and other anions including HCO₃⁻, Cl⁻, F⁻, and Br⁻ showed significant inhibition. The removal efficiency was significantly elevated with the addition of peroxymonosulfate (PMS) or persulfate (PS) ([Oxidant]₀:[IBP]₀ = 0.4–4), with reaction rate of 5.3–13.1 and 1.3–2.9 times as high as the control group, respectively. However, the reaction was slowed down with the introduction of H₂O₂. A mathematic model was employed to describe the effect of ferrate, high concentration or stepwise addition of ferrate was suggested to play a positive role in IBP photodegradation. Thirteen transformation products were identified and five of them were newly reported. The degradation pathways including hydroxylation, the benzene ring opening and the oxidation of carbon were proposed. IBP can be efficiently removed when spiked in wastewater and seawater despite the decreased degradation rate by 41% and 56%, respectively. Compared to the IBP removal, mineralization was relatively lower. The adverse effect of the parent compound IBP to the green algae Chlorella vulgaris was gradually eliminated with the decomposition of IBP. The transformation product C178a which possibly posed toxicity to rotifers Brachionus calyciflorus can also be efficiently removed, indicating that the photocatalysis process is effective in IBP removal, mineralization and toxicity elimination.
Show more [+] Less [-]Natural aeolian dust particles have no substantial effect on atmospheric polycyclic aromatic hydrocarbons (PAHs): A laboratory study based on naphthalene
2020
Natural aeolian dust (AD) particles are potential carriers of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. The heterogeneous interaction between them may lead to worsened air quality and enhanced cytotoxicity and carcinogenicity of ambient particulates in downwind areas, and this topic requires in-depth exploration. In this study, AD samples were collected from four Asian dust sources, and their physical properties and compositions were determined, showing great regional differences. The physical and chemical interactions of different AD particles with naphthalene (Nap; model PAH) were observed in aqueous systems. The results showed that AD particles from the Loess Plateau had weak adsorption to Nap, which was fitted by the Langmuir isotherm. There was no obvious adsorption to Nap found for the other three AD samples. This difference seemed to depend mainly on the specific surface area and/or the total pore volume. In addition, the Nap in the aqueous solution did not undergo chemical reactions under dark conditions and longwave ultraviolet (UV) radiation but degraded under shortwave UV radiation, and 2-formylcinnamaldehyde and 1,4-naphthoquinone were the first-generated products. The degradation of Nap in the aqueous solution was probably initiated by photoionization, and the reaction rate constant (between 1.44 × 10⁻⁴ min⁻¹ and 8.55 × 10⁻⁴ min⁻¹) was much lower than that of Nap with hydroxyl radicals. Instead of inducing or promoting the chemical change in Nap, the AD particles slowed photodegradation due to the extinction of radiation. Therefore, it is inferred that natural AD particles have no substantial effect on the transportation and transformation of PAHs in the atmosphere.
Show more [+] Less [-]Predicting mixture toxicity and antibiotic resistance of fluoroquinolones and their photodegradation products in Escherichia coli
2020
Wang, Dali | Ning, Qing | Dong, Jiayu | Brooks, Bryan W. | Yau, Ching
Antibiotics in the environment usually co-exist with their transformation products with retained toxicity, raising concerns about environmental risks of their combined exposure. Herein, we reported a novel predictive approach for evaluating the individual and combined toxicity for photodegradation products of fluoroquinolone antibiotics (FQs). Quantitative structure-activity relationship (QSAR) models with promising predictive performance were constructed and validated using experimental data obtained with 13 FQs and 78 mixtures towards E. coli. A structural descriptor reflecting the interaction among FQ molecules and the target protein was employed in the QSAR models, which was obtained through molecular docking and thus provided a rational mechanistic explanation for these models. The predicted results indicated that the degradation products displayed varying degrees of changes compared to the parent FQs, while the combined toxicity of FQs and their degradation products was mostly additive. Furthermore, following UV irradiation the degradation products displayed elevated capacity of inducing resistance mutations in E. coli, though their overall toxicity was reduced. This result highlights the implications of antibiotic degradation products on resistance development in bacteria and stresses the importance of considering such impacts during environmental risk assessments of antibiotics.
Show more [+] Less [-]