Refine search
Results 1-3 of 3
DEHP toxicity on vision, neuromuscular junction, and courtship behaviors of Drosophila
2018
Chen, Mei-Ying | Liu, Hsin-Ping | Liu, Chuan-Hsiu | Cheng, Jack | Chang, Meng-Shiun | Chiang, Su-Yin | Liao, Wing-Ping | Lin, Wei-Yong
Bis(2-ethylhexyl) phthalate (DEHP) is the most common plasticizer. Previous studies have shown DEHP treatment accelerates neurological degeneration, suggesting that DEHP may impact retinal sensitivity to light, neurotransmission, and copulation behaviors. Although its neurotoxicity and antifertility properties have been studied, whether DEHP exposure disrupts vision and how DEHP influences neuromuscular junction (NMJ) have not been reported yet. Moreover, the impact of DEHP on insect courtship behavior is still elusive. Fruit flies (Drosophila melanogaster) were treated with series concentrations of DEHP and observed for lifespan, motor function, electroretinogram (ERG), electrophysiology of neuromuscular junction (NMJ), courtship behaviors, and relevant gene expression. Our results confirmed the DEHP toxicity on lifespan and capacity of motor function and updated its effect on copulation behaviors. Additionally, we report for the first time that DEHP exposure may harm vision by affecting the synaptic signaling between the photoreceptor and the laminar neurons. Further, DEHP treatment altered both spontaneous and evoked neurotransmission properties. Noteworthy, the effect of DEHP exposure on the copulation behavior is sex-dependent, and we proposed potential mechanisms for future investigation.
Show more [+] Less [-]Identification of differentially expressed proteins in Ostrinia furnacalis adults after exposure to ultraviolet A
2018
Zhang, Changyu | Meng, Jianyu
Ultraviolet A (UVA), the major component of solar UV irradiation, is an important environmental factor inducing damage to insects including cell death, photoreceptor damage, and oxidative stress. In order to improve understanding of the adaptation mechanisms of insect after UVA exposure, a comparative proteomic analysis was carried out to reveal differential protein expression in Ostrinia furnacalis. Three-day-old adults were treated with UVA for 1 h. Total proteins of control and UVA-treated insects were examined using two-dimensional electrophoresis (2-DE). 2-DE analysis demonstrated that 19 proteins were increased and 18 proteins were decreased significantly in O. furnacalis after UVA exposure, respectively. Thirty differentially expressed proteins were successfully identified by mass spectrometry. The identified proteins were involved in diverse biological processes, such as signal transduction, transport processing, cellular stress, metabolisms, and cytoskeleton organization. Our results reveal that the response patterns of O. furnacalis to UVA irradiation are complex and provide novel insights into the adaptation response to UVA irradiation stress.
Show more [+] Less [-]Lethal and sub-lethal effects of cyproconazole on freshwater organisms: a case study with Chironomus riparius and Dugesia tigrina
2018
Saraiva, AlthiérisS. | Sarmento, RenatoA. | Golovko, Oksana | Randak, Tomas | Pestana, JoãoL. T. | Soares, AmadeuM. V. M.
The fungicide cyproconazole (CPZ) inhibits the biosynthesis of ergosterol, an essential sterol component in fungal cell membrane and can also affect non-target organisms by its inhibitory effects on P450 monooxygenases. The predicted environmental concentration of CPZ is up to 49.05 μg/L and 145.89 μg/kg in surface waters and sediments, respectively, and information about CPZ toxicity towards non-target aquatic organisms is still limited. This study aimed to address the lack of ecotoxicological data for CPZ, and thus, an evaluation of the lethal and sub-lethal effects of CPZ was performed using two freshwater invertebrates (the midge Chironomus riparius and the planarian Dugesia tigrina). The estimated CPZ 48 h LC₅₀ (95% CI) was 17.46 mg/L for C. riparius and 47.38 mg/L for D. tigrina. The emergence time (EmT₅₀) of C. riparius was delayed by CPZ exposure from 0.76 mg/L. On the other hand, planarians showed higher tolerance to CPZ exposure. Sub-lethal effects of CPZ on planarians included reductions in locomotion (1.8 mg/L), delayed photoreceptors regeneration (from 0.45 mg/L), and feeding inhibition (5.6 mg/L). Our results confirm the moderate toxicity of CPZ towards aquatic invertebrates but sub-lethal effects observed also suggest potential chronic effects of CPZ with consequences for population dynamics.
Show more [+] Less [-]