Refine search
Results 1-10 of 10
Organophosphorus pesticides exert estrogen receptor agonistic effect determined using Organization for Economic Cooperation and Development PBTG455, and induce estrogen receptor-dependent adipogenesis of 3T3-L1 adipocytes
2021
Kim, Jin-Tae | Lee, Hong Jin | Lee, Hee-Seok
Various chemicals containing pesticides can induce adipogenesis and cause obesity. Organophosphorus pesticides have been used for pest control. Here, we investigated the estrogen receptor (ER)-dependent adipogenesis-inducing effect of representative organophosphorus pesticides (OPs), diazinon, phoxim, terbufos and tolclofos-methyl in 3T3-L1 adipocytes. Four OPs exhibited ER agonistic effect, determined using the OECD Performance Based Test Guideline No. 455; in vitro ER stably transfected transactivation assay using ERα-HeLa-9903 cell line, through binding affinity to ERα. Additionally, they increased lipid droplet accumulation in a dose-dependent manner, which was suppressed by ICI182,780, a well-known ER antagonist. Four OPs treatment induced peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and perilipin expression. Furthermore, PPARγ, C/EBPα and perilipin expression was inhibited by co-treatment with ICI182,780. The increased mRNA expression of lipoprotein lipase and fatty acid synthase by four OPs was suppressed by co-treatment with ICI182,780. These results indicated that diazinon, phoxim, terbufos, and tolclofos-methyl might have adipogenesis-inducing effect mediated by interacting with ER.
Show more [+] Less [-]Trichoderma asperellum reduces phoxim residue in roots by promoting plant detoxification potential in Solanum lycopersicum L
2020
Chen, Shuangchen | Yan, Yaru | Wang, Yaqi | Wu, Meijuan | Mao, Qi | Chen, Yifei | Ren, Jingjing | Liu, Airong | Lin, Xiaomin | Ahammed, Golam Jalal
Phoxim, a broad-spectrum organophosphate pesticide, is widely used in agriculture to control insect pests in vegetable crops as well as in farm mammals. However, the indiscriminate use of phoxim has increased its release into the environment, leading to the contamination of plant-based foods such as vegetables. In this study, we investigated the effect of Trichoderma asperellum (TM, an opportunistic fungus) on phoxim residue in tomato roots and explored the mechanisms of phoxim metabolism through analysis of detoxification enzymes and gene expression. Degradation kinetics of phoxim showed that TM inoculation rapidly and significantly reduced phoxim residues in tomato roots. Phoxim concentrations at 5d, 10d and 15d post treatment were 75.12, 65.71 and 77.45% lower in TM + phoxim than only phoxim treatment, respectively. The TM inoculation significantly increased the glutathione (GSH) content, the activity of glutathione S-transferase (GST) and the transcript levels of GSH, GST1, GST2 and GST3 in phoxim-treated roots. In addition, the activity of peroxidase and polyphenol peroxidase involved in the xenobiotic conversion also increased in TM + phoxim treatment. The expression of detoxification genes, such as CYP724B2, GR, ABC2 and GPX increased by 3.82, 3.08, 7.89 and 2.46 fold, respectively in TM + phoxim compared with only phoxim. Similarly, the content of ascorbate (AsA) and the ratio of AsA to dehydroascorbate increased by 45.16% and 57.34%, respectively in TM + phoxim-treated roots. Our results suggest that TM stimulates plant detoxification potential in all three phases (conversion, conjugation and sequestration) of xenobiotc metabolism, leading to a reduced phoxim residue in tomato roots.
Show more [+] Less [-]Effect of decocting on the pesticide residues in Paeoniae radix lactiflora and corresponding exposure risk assessment
2021
Numerous natural preparations in traditional Chinese medicine are prepared as decoctions. Processing factors (PFs) comparing the levels of pesticide residues in decoctions to those in the corresponding unprocessed products should be considered in exposure assessments. Thus, this study determined the residue levels of six pesticides (chlorpyrifos, phoxim, imidacloprid, thiamethoxam, fenpropathrin, and emamectin benzoate), as well as 3,5,6-trichloropyridinol, the primary metabolite of chlorpyrifos, and clothianidin, the main metabolite of thiamethoxam in Baishao, Paeoniae radix lactiflora (Fam. Ranunculaceae). The results showed that significant time-response effects were present for the release of pesticides from P. radix. The PFs calculated were < 1, indicating a significant reduction in pesticide residues after TCM processing. The water solubility and partition coefficient values of the pesticides may have played a basic role in the dissipation of the residues during the TCM decocting process. A risk assessment based on the hazard quotient with PFs revealed that exposure to pesticide residues in P. radix was far below the levels that might pose a health risk. In conclusion, the results presented here are of theoretical and practical value for the safety evaluation of TCMs.
Show more [+] Less [-]Microfluidic preparation of a novel phoxim nanoemulsion pesticide against Spodoptera litura
2022
Li, Zong-Nan | Zhang, Yu-Xuan | Zhang, Zhi'ang | Pan, Lian-Han | Li, Ping | Xu, Yan | Sheng, Sheng | Wu, Fu-An | Wang, Jun
With continuous development of pesticide dosage forms, emulsifiable concentrates using large amounts of organic solvents are gradually obsoleted. Nanoemulsions with high water content have been developed and the preparation processes also evolved, but these processes still exist some problems, such as poor controllability and high energy consumption. Microfluidic is a controllable nanoemulsion preparation system which mainly applied to pharmaceutical synthesis. In this study, the pesticide phoxim nanoemulsion was prepared by microfluidic technology. The optimized formulation of phoxim nanoemulsion was composed of Tween 80 and pesticide emulsifier 500 as surfactant, hexyl acetate as oil, and n-propanol as co-surfactant. Moreover, when the flow rates of water and oil in the microfluidic system were adjusted to 5 μL/min and 20 μL/min, phoxim nanoemulsion was obtained with a cloud point/boiling point of 109 °C, a particle size of 21.5 ± 0.8 nm and a potential value of − 18.7 ± 0.6 mV. Furthermore, the nanoemulsion had a rapid release effect in vitro which could be fitted by the Ritger-Peppas model. The feeding toxicity of the phoxim nanoemulsion was higher than that of commercial formulation while the contact killing effect was higher than that of the active ingredient. Therefore, pesticide dosage was reduced and the insecticidal effect was enhanced by using phoxim nanoemulsions. These results also confirm the potential of microfluidics as a green process to produce pesticide nanoemulsions.
Show more [+] Less [-]Evaluation of phoxim toxicity on aquatic and zebrafish intestinal microbiota by metagenomics and 16S rRNA gene sequencing analysis
2022
Zhang, Jinfeng | Zhang, Qi | Zhang, Zhenyan | Zhou, Zhigao | Lu, Tao | Sun, Liwei | Qian, Haifeng
Phoxim is one of the main organophosphorus pesticides used in agricultural production. However, little information is known about how it affects the aquatic microbial community and the intestinal microbiota of fish. Herein, we utilized shotgun metagenomics and 16S rRNA gene sequencing to reveal the aquatic eco-risk of phoxim. Seven days of phoxim exposure significantly changed the composition of aquatic microbial community, obliterated the interactions between microorganisms, and thus reduced the complexity and stability of the microbial community. During long-time exposure (i.e., 14 days), most of the ecological functions were restored due to the redundancy of the microbial community. However, phoxim exposure promoted the dissemination of elfamycin resistance gene. The zebrafish gut microbial community also recovered from a temporary ecological disorder of aquatic microbiota, but phoxim continually affected zebrafish growth and swimming behavior. Overall, our results demonstrated that phoxim exposure significantly changed the structure and function of the microbial community and displayed a negative impact on freshwater ecosystems in a short exposure time.
Show more [+] Less [-]Isolation of monocrotophos-degrading strain Sphingobiumsp. YW16 and cloning of its TnopdA
2018
Sun, Lina | Liu, Hongming | Gao, Xinhua | Chen, Wei | Huang, Kaihua | Zhang, Sui
The bacterial strain Sphingobium sp. YW16, which is capable of degrading monocrotophos, was isolated from paddy soil in China. Strain YW16 could hydrolyze monocrotophos to dimethylphosphate and N-methylacetoacetamide and utilize dimethylphosphate as the sole carbon source but could not utilize N-methylacetoacetamide. Strain YW16 also had the ability to hydrolyze other organophosphate pesticides. A fragment (7067 bp) that included the organophosphorus hydrolase gene, opdA, was acquired from strain YW16 using the shotgun technique combined with SEFA-PCR. Its sequence illustrated that opdA was included in TnopdA, which consisted of a transpose gene, a putative integrase gene, a putative ATP-binding protein gene, and opdA. Additionally, a conjugal transfer protein gene, traI, was located downstream of TnopdA. The juxtaposition of TnopdA with TraI suggests that opdA may be transferred from strain YW16 to other bacteria through conjugation. OpdA was able to hydrolyze a wide range of organophosphate pesticides, with the hydrolysis efficiency decreasing as follows: methyl parathion > fenitrothion > phoxim > dichlorvos > ethyl parathion > trichlorfon > triazophos > chlorpyrifos > monocrotophos > diazinon. This work provides the first report of opdA in the genus Sphingobium.
Show more [+] Less [-]Effects of phoxim-induced hepatotoxicity on SD rats and the protection of vitamin E
2017
Zhang, Jing | Song, Wentao | Sun, Yuecheng | Shan, Anshan
Currently, public pay more attention to the adverse effect of organophosphate pesticides on human and animal health and on the environment in developing nations. Vitamin E may protect the hepatocyte and increase the function of liver. The study was to investigate the effects of phoxim-induced hepatotoxicity on Sprague Dawley (SD) rats and the protection of vitamin E. SD rats received by gavage 180 mg kg⁻¹ (per body weight) of phoxim, 200 mg kg⁻¹ (per body weight) of vitamin E, and phoxim + vitamin E. The results showed that exposure to phoxim elevated liver coefficient; glutamyl transpeptidase (GGT), aspartate aminotransferase, alkaline phosphatase, total bilirubin, total bile acid, and alanine aminotransferase in the serum; ROS in the liver; and the expression of p53, Bax, CYP2E1, ROS, caspase-9, caspase-8, and caspase-3, while phoxim caused a reduction of total protein, albumin, and cholinesterase in the serum; acetylcholinesterase, total antioxidant capacity, glutathione peroxidase, and glutathione in the liver; and the expression of Bcl-2. Vitamin E modified the phoxim-induced hepatotoxicity by reducing the GGT in the serum, malondialdehyde in the liver, and the expression of CYP2E1 significantly. There were no significant changes of globulin in the serum, the activity of catalase in the liver, as well as expression levels of Fas and Bad in the liver. Overall, subacute exposure to phoxim induced hepatic injury, oxidative stress damage, and cell apoptosis. Vitamin E modified phoxim-induced hepatotoxicity slightly. And, vitamin E minimized oxidative stress damage and ultrastructural changes in rat hepatocytes notably.
Show more [+] Less [-]Joint acute toxicity of the herbicide butachlor and three insecticides to the terrestrial earthworm, Eisenia fetida
2016
Wang, Yanhua | Cang, Tao | Yu, Ruixian | Wu, Shenggan | Liu, Xinju | Chen, Chen | Wang, Qiang | Cai, Leiming
The herbicide butachlor and three insecticides phoxim, chlorpyrifos, and lambda-cyhalotrhin are widely used pesticides with different modes of action. As most previous laboratory bioassays for these pesticides have been conducted solely based on acute tests with a single compound, only limited information is available on the possible combined toxicity of these common chemicals to soil organisms. In this study, we evaluated their mixture toxicity on the terrestrial earthworm, Eisenia fetida, with binary, ternary, and quaternary mixtures. Two different types of bioassays were employed in our work, including a contact filter paper toxicity test and a soil toxicity test. Mixture toxicity effects were assessed using the additive index method. For all of the tested binary mixtures (butachlor-phoxim, butachlor-chlorpyrifos, and butachlor-lambda-cyhalothrin), significant synergistic interactions were observed after 14 days in the soil toxicity assay. However, greater additive toxicity was found after 48 h in the contact toxicity bioassay. Most of the ternary and quaternary mixtures exhibited significant synergistic effects on the worms in both bioassay systems. Our findings would be helpful in assessing the ecological risk of these pesticide mixtures to soil invertebrates. The observed synergistic interactions underline the necessity to review soil quality guidelines, which are likely underestimating the adverse combined effects of these compounds.
Show more [+] Less [-]Part II: temporal and spatial distribution of multiclass pesticide residues in lake sediments of northern Greece: application of an optimized MAE-LC-MS/MS pretreatment and analytical method
2014
Kalogridi, Eleni-Chrysoula | Christophoridis, Christophoros | Bizani, Erasmia | Drimaropoulou, Garyfallia | Fytianos, Konstantinos
The development and application of an analytical methodology for the pretreatment and determination of 253 multiclass pesticides, in lake sediment samples, using liquid chromatography coupled with mass spectrometry (LC-MS/MS) are described in this work. Sediments of lakes Volvi, Doirani, and Kerkini, located in northern Greece, were collected in two-time periods (fall/winter 2010 and spring/summer 2011) and analyzed, applying the developed analytical methodology. Microwave-assisted extraction (MAE) was applied to extract the pesticide residues from lake sediment samples. Analytical results were stored, categorized, and visualized using geographical information systems, in order to assess and observe spatial and temporal variations of the pollution. Main pesticides that were detected included the following: amitrole, tebuconazole, phoxim, diniconazole, sethoxydim, temephos, tetrachlorvinphos, pendimethalin, boscalid, disulfoton sulfone, lenacil, propiconazole, cycloxydim, pyridaben, and terbuthylazine. Amitrole, diniconazole, and tebuconazole were found to be common in all three lakes. Lakes Kerkini and Doirani exhibited increased concentrations during the first sampling period (winter 2010) with predominant pesticide classes, triazines/triazoles and organophosphates. Pollution is mainly located near the populated villages of the lakes and the nearby cultivations. During the second sampling period, pesticide concentrations appear lower and located in sediments near the center of the lake. Lake Volvi exhibits increased pesticide concentrations during the second sampling period, temporal and spatial variations and different pesticide profile pattern. Increased pollution occurs near the center of the lake during the first sampling period, mainly comprised by triazines/triazoles and organophosphates. During the second sampling period, the majority of the sediment samples demonstrated a different pesticide profile dominated by unclassified pesticides and triazines/triazoles. Mineralogical analysis of the samples demonstrates that sediments are mainly composed of clay, mud, and sand particles, and they present spatial variations. Near the center of the lakes, sediments appear to be more fine-grained with higher clay content and are more likely to adsorb pesticides.
Show more [+] Less [-]Vitamin E alleviates phoxim-induced toxic effects on intestinal oxidative stress, barrier function, and morphological changes in rats
2018
Sun, Yuecheng | Zhang, Jing | Song, Wentao | Shan, Anshan
Phoxim is an organic phosphorus pesticide that remains easily in the environment, such as human food and animal feed. The objective of this study was to explore the effect of vitamin E on phoxim-induced oxidative stress in the intestinal tissues of Sprague-Dawley (SD) rats. Forty-eight Sprague-Dawley rats were randomly assigned to a control group and three treatment groups: treatment group 1 (phoxim: 20 mg/kg·BW), treatment group 2 (phoxim: 180 mg/kg·BW), and treatment 3 (vitamin E + phoxim: 200 mg/kg·BW + 180 mg/kg·BW). Phoxim was given by gavage administration once a day for 28 days. The results showed that phoxim significantly reduced jejunum villus height in rats (P < 0.05), and decreased the mRNA expression of junction protein genes of rats, including Occlidin and Claudin-4 (P < 0.05). Phoxim reduced GSH content and T-AOC level in the intestinal mucosa (P < 0.05). The mRNA expression levels of oxidative stress-related genes (Nrf2 and GPx2) were decreased. The mRNA expression of SOD was significantly increased. In addition, phoxim increased the level of interleukin-6 (IL-6) in jejunum mucosa and significantly reduced the level of IL-8 in ileum mucosas, while significantly increased TNF-α secretion. The mRNA expression levels of IL-1β, IL-6, and IL-8 were significantly decreased, and mRNA expression of TNF-α was significantly increased (P < 0.05). Phoxim also increased the DNA expression of total cecal bacteria and Escherichia coli, inhibited the DNA expression of Lactobacillus and destroyed the intestinal barrier. Two hundred milligrams per kilogram BW vitamin E reduced the effect of phoxim on intestinal structure, alleviated the oxidative stress in intestinal tissue, and decreased the level of TNF-α. The mRNA expressions of antioxidative stress genes (SOD and GPx2) were significantly increased. The DNA expression level of Lactobacillus was significantly increased. In conclusion, vitamin E helped reduce the toxicity of organophosphate pesticides, such as phoxim on rat intestinal tissue.
Show more [+] Less [-]