Refine search
Results 1-10 of 160
Ecotoxicological effects of traffic-related metal sediment pollution in Lumbriculus variegatus and Gammarus sp Full text
2021
Kontchou, Julios A. | Nachev, Milen | Sures, Bernd
To reduce direct discharges of surface runoff to receiving waters, separate sewer systems have been implemented, with runoff retention basins (RRB) for pollutant pretreatment by sedimentation and infiltration. However, due to frequent and intense precipitation events, most RRBs are overwhelmed by runoff resulting in overflow into the receiving freshwater bodies. Hence, the present study evaluates the impact of traffic-related runoff overflow on metal concentrations in sediment and Gammarus sp. Downstream of the RRB outfall in the receiving stream. Samples were collected from the RRB, upstream (reference site) and at different distances downstream from the RRB outfall in the stream. The samples were analyzed for the presence and distribution of metals using ICP-MS. Furthermore, ecotoxicological effects of the overflow on benthic species were assessed using Lumbriculus variegatus exposed to the field sediments. Our findings reveal that overflow of the RRB results in elevated traffic-related metal concentrations in sediment and biota of the stream. Within the first 50 m downstream increased sediment metal concentrations were found. The gammarids downstream of the RRB outfall showed an increased accumulation of several metals. Similarly, the metals were found to be taken up by the endobenthic L. variegatus under laboratory conditions and the bioaccumulation pattern was related to the sediment concentrations. Bioaccumulation by both organisms is an indication that overflow of the RRB also leads to uptake of increased element amounts in organisms downstream. Laboratory-based studies addressing standard toxicity endpoints showed no clear toxic effects on growth and reproduction. However, elevated levels of metallothioneins were measured in the annelids during the test period. This indicates a physiological response induced by increased metal concentrations due to RRB overflow. Hence, the results of this study show that discharges by the RRB increase the metal concentration in the receiving stream with the possibility of adverse effects on organisms.
Show more [+] Less [-]Isolated and combined effects of thermal stress and copper exposure on the trophic behavior and oxidative status of the reef-building coral Mussismilia harttii Full text
2021
da Silva Fonseca, Juliana | Mies, Miguel | Paranhos, Alana | Taniguchi, Satie | Güth, Arthur Z. | Bícego, Márcia C. | Marques, Joseane Aparecida | Fernandes de Barros Marangoni, Laura | Bianchini, Adalto
Global warming and local disturbances such as pollution cause several impacts on coral reefs. Among them is the breakdown of the symbiosis between host corals and photosynthetic symbionts, which is often a consequence of oxidative stress. Therefore, we investigated if the combined effects of thermal stress and copper (Cu) exposure change the trophic behavior and oxidative status of the reef-building coral Mussismilia harttii. Coral fragments were exposed in a mesocosm system to three temperatures (25.0, 26.6 and 27.3 °C) and three Cu concentrations (2.9, 5.4 and 8.6 μg L⁻¹). Samples were collected after 4 and 12 days of exposure. We then (i) performed fatty acid analysis by gas chromatography-mass spectrometry to quantify changes in stearidonic acid and docosapentaenoic acid (autotrophy markers) and cis-gondoic acid (heterotrophy marker), and (ii) assessed the oxidative status of both host and symbiont through analyses of lipid peroxidation (LPO) and total antioxidant capacity (TAC). Our findings show that trophic behavior was predominantly autotrophic and remained unchanged under individual and combined stressors for both 4- and 12-day experiments; for the latter, however, there was an increase in the heterotrophy marker. Results also show that 4 days was not enough to trigger changes in LPO or TAC for both coral and symbiont. However, the 12-day experiment showed a reduction in symbiont LPO associated with thermal stress alone, and the combination of stressors increased their TAC. For the coral, the isolated effects of increase in Cu and temperature led to an increase in LPO. The effects of combined stressors on trophic behavior and oxidative status were not much different than those from the isolated effects of each stressor. These findings highlight that host and symbionts respond differently to stress and are relevant as they show the physiological response of individual holobiont compartments to both global and local stressors.
Show more [+] Less [-]Growth and physiological responses of tree seedlings to oil sands non-segregated tailings Full text
2020
Zhang, Wen-Qing | Fleurial, Killian | Sherr, Ira | Vassov, Robert | Zwiazek, Janusz J.
Bitumen recovery from oil sands in northeastern Alberta, Canada produces large volumes of tailings, which are deposited in mining areas that must be reclaimed upon mine closure. A new technology of non-segregated tailings (NST) developed by Canadian Natural Resources Limited (CNRL) was designed to accelerate the process of oil sands fine tailings consolidation. However, effects of these novel tailings on plants used for the reclamation of oil sands mining areas remain to be determined. In the present study, we investigated the effects of NST on seedlings of three species of plants commonly planted in oil sands reclamation sites including paper birch (Betula papyrifera), white spruce (Picea glauca) and green alder (Alnus viridis). In the controlled-environment study, we grew seedlings directly in NST and in the two types of reclamation soils with and without added NST and we measured seedling growth, gas exchange parameters, as well as tissue concentrations of selected elements and foliar chlorophyll. White spruce seedlings suffered from severe mortality when grown directly in NST and their needles contained high concentrations of Na. The growth and physiological processes were also inhibited by NST in green alder and paper birch. However, the addition of top soil and peat mineral soil mix to NST significantly improved the growth of plants, possibly due to a more balanced nutrient uptake. It appears that NST may offer some advantages in terms of site revegetation compared with the traditional oil sands tailings that were used in the past. The results also suggest that, white spruce may be less suitable for planting at reclamation sites containing NST compared with the two studied deciduous tree species.
Show more [+] Less [-]iTRAQ-based proteomic profiling of Pycnoporus sanguineus in response to co-existed tetrabromobisphenol A (TBBPA) and hexavalent chromium Full text
2018
Feng, Mi | Yin, Hua | Peng, Hui | Lu, Guining | Liu, Zehua | Dang, Zhi
In current study, we investigated the changes of proteome profiles of Pycnoporus sanguineus after a single exposure of Cr(VI), TBBPA and a combined exposure of TBBPA and Cr(VI), with the goal of illuminating the cellular mechanisms involved in the interactions of co-existed TBBPA and Cr(VI) with the cells of P. sanguineus at the protein level. The results revealed that some ATP-binding cassette (ABC) transporters were obviously induced by these pollutants to accelerate the transportation, transformation and detoxification of TBBPA and Cr(VI). Cr(VI) could inhibit the bioremoval of its organic co-pollutants TBBPA through suppressing the expression of several key proteins related to the metabolism of TBBPA by P. sanguineus, including two cytochrome P450s, pentachlorophenol 4-monooxygenase and glutathione S-transferases. Furthermore, Cr(VI) possibly reduced the cell vitality and growth of P. sanguineus by enhancing the expression of imidazole glycerol phosphate synthase as well as by decreasing the abundances of proteins associated with the intracellular metabolic processes, such as the tricarboxylic acid cycle, purine metabolism and glutathione biosynthesis, thereby adversely affecting the biotransformation of TBBPA. Cr(VI) also inhibited the expression of peptidyl prolyl cis/trans isomerases, thus causing the damage of cell membrane integrity. In addition, some important proteins participated in the resistance to Cr(VI) toxicity were observed to up-regulate, including heat shock proteins, 26S proteasome, peroxiredoxins and three critical proteins implicated in S-adenosyl methionine synthesis, which contributed to reducing the hazard of Cr(VI) to P. sanguineus. The results of this study provide novel insights into the physiological responses and molecular mechanism of white rot fungi P. sanguineus to the stress of concomitant TBBPA and Cr(VI).
Show more [+] Less [-]Zinc oxide nanoparticles alter the wheat physiological response and reduce the cadmium uptake by plants Full text
2018
Hussain, Afzal | Ali, Shafaqat | Rizwan, Muhammad | Zia ur Rehman, Muhammad | Javed, Muhammad Rizwan | Imran, Muhammad | Chatha, Shahzad Ali Shahid | Nazir, Rashid
An experiment was performed to explore the interactive impacts of zinc oxide nanoparticles (ZnO NPs) and cadmium (Cd) on growth, yield, antioxidant enzymes, Cd and zinc (Zn) concentrations in wheat (Triticum aestivum). The ZnO NPs were applied both in Cd-contaminated soil and foliar spray (in separate studies) on wheat at different intervals and plants were harvested after physiological maturity. Results depicted that ZnO NPs enhanced the growth, photosynthesis, and grain yield, whereas Cd and Zn concentrations decreased and increased respectively in wheat shoots, roots and grains. The Cd concentrations in the grains were decreased by 30–77%, and 16–78% with foliar and soil application of NPs as compared to the control, respectively. The ZnO NPs reduced the electrolyte leakage while increased SOD and POD activities in leaves of wheat. It can be concluded that ZnO NPs (levels used in the study) could effectively reduce the toxicity and concentration of Cd in wheat whereas increase the Zn concentration in wheat. Thus, ZnO NPs might be helpful in decreasing Cd and increasing Zn biofortification in cereals which might be effective to reduce the hidden hunger in humans owing the deficiency of Zn in cereals.
Show more [+] Less [-]Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide? Full text
2016
Gomes, Marcelo Pedrosa | Juneau, Philippe
We investigated the physiological responses of Lemna minor plants exposed to glyphosate. The deleterious effects of this herbicide on photosynthesis, respiration, and pigment concentrations were related to glyphosate-induced oxidative stress through hydrogen peroxide (H2O2) accumulation. By using photosynthetic and respiratory electron transport chain (ETC) inhibitors we located the primary site of reactive oxygen species (ROS) production in plants exposed to 500 mg glyphosate l−1. Inhibition of mitochondrial ETC Complex I by rotenone reduced H2O2 concentrations in glyphosate-treated plants. Complex III activity was very sensitive to glyphosate which appears to act much like antimycin A (an inhibitor of mitochondrial ETC Complex III) by shunting electrons from semiquinone to oxygen, with resulting ROS formation. Confocal evaluations for ROS localization showed that ROS are initially produced outside of the chloroplasts upon initial glyphosate exposure. Our results indicate that in addition to interfering with the shikimate pathway, glyphosate can induce oxidative stress in plants through H2O2 formation by targeting the mitochondrial ETC, which would explain its observed effects on non-target organisms.
Show more [+] Less [-]Physiological differences in response to di-n-butyl phthalate (DBP) exposure between low- and high-DBP accumulating cultivars of Chinese flowering cabbage (Brassica parachinensis L.) Full text
2016
Zhao, Hai-Ming | Du, Huan | Xiang, Lei | Li, Yan-Wen | Li, Hui | Cai, Quan-Ying | Mo, Ce-Hui | Cao, Gang | Wong, Ming-Hung
To increase understanding on the mechanisms of cultivar difference in contaminant accumulation in crops, this study was designed to compare the physiological responses to di-n-butyl phthalate (DBP) exposure between low (Lvbao70) and high (Huaguan) DBP cultivars of Chinese flowering cabbage (Brassica parachinensis L.). Under high DBP exposure, significant differences in various physiological responses were observed between the two cultivars, which might account for the variation in DBP accumulation. Ultrastructure observation also showed different alterations or damages in the mesophyll cell structures between both cultivars, especially for the chloroplast disintegration, starch grain quantity, and plastoglobuli accumulation. Compared with Huaguan, Lvbao70 suffered greater decreases in biomass, chlorophyll content, carbon assimilation, gas exchange parameters, photosynthetic electron transport capacity, and antioxidase activities, which would have resulted in a great reduction of photosynthetic capacity. Although Lvbao70 enhanced energy dissipation and activities of some antioxidant enzymes, they did not provide sufficient protection against oxidative damage caused by DBP. The result suggested that the lower DBP tolerance of Lvbao70 might be associated with its poor physiological performances, which was responsible for its lower DBP accumulation to protect itself from toxicity. Additionally, Lvbao70 had a significantly lower transpiration rate and stomatal conductance than Huaguan, which might be the factors regulating DBP-accumulation variation.
Show more [+] Less [-]Multi-generational effects of propranolol on Daphnia magna at different environmental concentrations Full text
2015
Jeong, Tae-Yong | Kim, Hyun Young | Kim, Sang-don
To evaluate the effects of propranolol on Daphnia magna (D. magna), we employed a multi-generational exposure period for eight generations and an environmentally relevant low concentration with 1.5 ng/L, 0.2 μg/L and 26 μg/L to reflect a realistic exposure scenario. Physiological endpoints were checked, including growth, number of neonates, heart rate, frequency of abdominal appendage movement and malformation rate of neonates. In the results, growth and abdominal appendage movement were affected by environmental concentration during several generations, and the responses showed consistent tendencies of response increase with concentration increase. Heart rate was the only endpoint affected throughout all exposure generations. Inhibitory and acceleratory effects on heart rate, growth and abdominal appendage movement suggest that it is necessary to cover sub-lethal endpoints of non-targeted organisms in eco-toxicity study because the physiological responses were detected at much lower concentrations than the results of traditional toxicity tests, including environmental concentration.
Show more [+] Less [-]Physiological responses of lichens to factorial fumigations with nitric acid and ozone Full text
2012
Riddell, J. | Padgett, P.E. | Nash, T.H. III
This paper addresses the effects of gaseous nitric acid (HNO₃) and ozone (O₃), two important air pollutants, on six lichen species with different morphological, ecological, and biological characteristics. The treatment chambers were set up in a factorial design consisting of control chambers, chambers fumigated with HNO₃, with O₃, and with HNO₃ and O₃, together. Each species showed a different sensitivity to the fumigations, reflecting the physiological variation among species. Our results clearly indicate that HNO₃ is a strong phytotoxin to many lichens, and that O₃ alone has little effect on the measured parameters. The combined fumigation effects of HNO₃ and O₃ were not significantly different from HNO₃ alone.
Show more [+] Less [-]Interactions between plant and rhizosphere microbial communities in a metalliferous soil Full text
2010
Epelde, Lur | Becerril, José M. | Barrutia, Oihana | González-Oreja, José A. | Garbisu, Carlos
In the present work, the relationships between plant consortia, consisting of 1-4 metallicolous pseudometallophytes with different metal-tolerance strategies (Thlaspi caerulescens: hyperaccumulator; Jasione montana: accumulator; Rumex acetosa: indicator; Festuca rubra: excluder), and their rhizosphere microbial communities were studied in a mine soil polluted with high levels of Cd, Pb and Zn. Physiological response and phytoremediation potential of the studied pseudometallophytes were also investigated. The studied metallicolous populations are tolerant to metal pollution and offer potential for the development of phytoextraction and phytostabilization technologies. T. caerulescens appears very tolerant to metal stress and most suitable for metal phytoextraction; the other three species enhance soil functionality. Soil microbial properties had a stronger effect on plant biomass rather than the other way around (35.2% versus 14.9%). An ecological understanding of how contaminants, ecosystem functions and biological communities interact in the long-term is needed for proper management of these fragile metalliferous ecosystems.
Show more [+] Less [-]