Refine search
Results 1-10 of 19
Riparian vegetation as a trap for plastic litter
2022
Cesarini, Giulia | Scalici, Massimiliano
Plastic pollution represents the most widespread threaten throughout the world and, amongst aquatic habitats, freshwaters and in particular riparian zones seems to be highly disturbed. Since the plastic storage and accumulation on the riparian vegetation have not yet been deeply investigated, here, we focussed on the riparian zone's function in trapping plastic litter. To do so, we assessed the occurrence and density of plastics in different vegetated (arboreal, shrubby, herbaceous, reed, bush) and unvegetated types in 8 central Italian rivers, running in different land use contexts. Our results showed that plastic pieces, bags, bottles and food containers were the most abundant specific categories on the vegetated types, demonstrating the riparian vegetation role in trapping plastic litter. Specifically, the highest plastic density was found on the shrubby type suggesting that a tree shape retains plastics more easily than all other vegetated and unvegetated types. Shape and size classification of plastics are not significantly different between vegetated and unvegetated types. These findings allow to collect important information on how the riparian vegetation can be exploited in management activities for removing plastic litters from both freshwater and sea, being the former considered the main plastic source for the latter. This study highlights a further ecosystem service as mechanical filter provided by the riparian zone, even if further studies ought to be performed to understand the role of vegetation as plastic trap and the possible detrimental effects of plastics on the plant health status.
Show more [+] Less [-]Endophytic fungus Serendipita indica reduces arsenic mobilization from root to fruit in colonized tomato plant
2022
Shukla, Jagriti | Mohd, Shayan | Kushwaha, Aparna S. | Narayan, Shiv | Saxena, Prem N. | Bahadur, Lal | Mishra, Aradhana | Shirke, Pramod Arvind | Kumar, Manoj
The accumulation of arsenic in crop plants has become a worldwide concern that affects millions of people. The major source of arsenic in crop plants is irrigation water and soil. In this study, Serendipita indica, an endophytic fungus, was used to investigate the protection against arsenic and its accumulation in the tomato plant. We found that inoculation of S. indica recovers seed germination, plant growth and improves overall plant health under arsenic stress. A hyper-colonization of fungus in the plant root was observed under arsenic stress, which results in reduced oxidative stress via modulation of antioxidative enzymes, glutathione, and proline levels. Furthermore, fungal colonization restricts arsenic mobilization from root to shoot and fruit by accumulating it exclusively in the root. We observed that fungal colonization enhances the arsenic bioaccumulation factor 1.48 times in root and reduces the arsenic translocation factor by 2.96 times from root to shoot and 13.6 times from root to fruit compared to non colonized plants. Further, investigation suggests that S. indica can tolerate arsenic by immobilizing it on the cell wall and accumulating it in the vacuole. This study shows that S. indica may be helpful for the reduction of arsenic accumulation in crops grown in arsenic-contaminated agriculture fields.
Show more [+] Less [-]Active green wall plant health tolerance to diesel smoke exposure
2018
Paull, Naomi J. | Irga, Peter J. | Torpy, Fraser R.
Poor air quality is an emerging world-wide problem, with most urban air pollutants arising from vehicular emissions. As such, localized high pollution environments, such as traffic tunnels pose a significant health risk. Phytoremediation, including the use of active (ventilated) green walls or botanical biofilters, is gaining recognition as a potentially effective method for air pollution control. Research to date has tested the capacity of these systems to remove low levels of pollutants from indoor environments. If botanical biofilters are to be used in highly polluted environments, the plants used in these systems must be resilient, however, this idea has received minimal research. Thus, testing was conducted to assess the hardiness of the vegetated component of a botanical biofilter to simulated street level air pollutant exposure. A range of morphological, physiological, and biochemical tests were conducted on 8 common green wall plant species prior to and post 5-week exposure to highly concentrated diesel fuel combustion effluent; as a pilot study to investigate viability in in situ conditions. The results indicated that species within the fig family were the most tolerant species of those assessed. It is likely that species within the fig family can withstand enhanced air pollutant conditions, potentially a result of its leaf morphology and physiology. Other species tested were all moderately tolerant to the pollution treatment. We conclude that most common green wall plant species have the capacity to withstand high pollutant environments, however, extended experimentation is needed to rule out potential long term effects along with potential decreases in filter efficiency from accumulative effects on the substrate.
Show more [+] Less [-]Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs)
2014
Brennan, Aoife | Moreno Jiménez, Eduardo | Alburquerque, José A. | Knapp, Charles W. | Switzer, Christine
With the aim of investigating the effects of carbonaceous sorbent amendment on plant health and end point contaminant bioavailability, plant experiments were set up to grow maize (Zea mays) in soil contaminated with polycyclic aromatic hydrocarbons (PAHs) and metals. Maize and pine derived biochars, as well as a commercial grade activated carbon, were used as amendments. Plant growth characteristics, such as chlorophyll content and shoot to root biomass, improved with sorbent amendment to varying extents and contaminant uptake to shoots was consistently reduced in amended soils. By further defining the conditions in which sorbent amended soils successfully reduce contaminant bioavailability and improve plant growth, this work will inform field scale remediation efforts.
Show more [+] Less [-]Unravelling remote sensing signatures of plants contaminated with gasoline and diesel: An approach using the red edge spectral feature
2013
Sanches, I.D. | Souza Filho, C.R. | Magalhães, L.A. | Quitério, G.C.M. | Alves, M.N. | Oliveira, W.J.
Pipeline systems used to transport petroleum products represent a potential source of soil pollution worldwide. The design of new techniques that may improve current monitoring of pipeline leakage is imperative. This paper assesses the remote detection of small leakages of liquid hydrocarbons indirectly, through the analysis of spectral features of contaminated plants. Leaf and canopy spectra of healthy plants were compared to spectra of plants contaminated with diesel and gasoline, at increasing rates of soil contamination. Contamination effects were observed both visually in the field and thorough changes in the spectral reflectance patterns of vegetation. Results indicate that the remote detection of small volumes of gasoline and diesel contaminations is feasible based on the red edge analysis of leaf and canopy spectra of plants. Brachiaria grass ranks as a favourable choice to be used as an indicator of HCs leakages along pipelines.
Show more [+] Less [-]Development of a test-tube stress-ethylene bioassay for detecting phytotoxic gases | Development of a test-tube stress-ethylene bioassay for detecting phytotoxic gases
1982
Craker, L. E. | Fillatti, J. J.
A rapid, quantitative bioassay for detecting phytotoxic air pollutants has been developed. The technique uses wheat Triticum aestivum L. or tomato Lycopersicon esculentum L., seedlings growing on an agar medium in test-tubes. The seedlings are exposed to a pollutant in the test-tube and stress-ethylene induced by the pollutant is quantitatively measured by gas chromatography. Increases in ethylene production from seedlings exposed to a phytotoxic air pollutant as compared with controls not exposed to pollutants were related to the pollutant concentration.
Show more [+] Less [-]Bone-derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi-metal contaminated mining soil
2021
Azeem, Muhammad | Ali, Amjad | Arockiam Jeyasundar, Parimala Gnana Soundari | Li, Yiman | Abdelrahman, Hamada | Latif, Abdul | Li, Ronghua | Basta, Nicholas | Li, Gang | Shaheen, Sabry M. | Rinklebe, Jörg | Zhang, Zenqqiang
Reusing by-products such as cow bones in agriculture can be achieved thorough pyrolysis. The potential of bone-derived biochar as a promising material for metals immobilization in contaminated mining soils has not yet been sufficiently explored. Therefore, cow bones were used as biochar feedstock were pyrolyzed at 500 °C (CBL) and 800 °C (CBH) and. The two biochars were applied to a mine contaminated soil at 0 (control), 2.5, 5 and 10%, w/w, dosages; then, the soils were incubated and cultivated by maize in the greenhouse. Cadmium (Cd) and zinc (Zn) bioavailability and their sequentially extracted fractions (acid soluble, reducible, oxidizable, and residual fraction), soil microbial function, and plant health attributes were analyzed after maize harvesting. Bone-derived biochar enhanced the content of dissolved organic carbon (up to 74%), total nitrogen (up to 26%), and total phosphorus (up to 27%) in the soil and improved the plant growth up to 55%, as compared to the control. The addition of CBL altered the acid soluble fraction of both metals to the residual fraction and, thus, reduced the content of Zn (55 and 40%) and Cd (57 and 67%) in the maize roots and shoots, respectively as compared to the control. The CBL enhanced the β-glucosidase (51%) and alkaline phosphatase activities (71%) at the lower doses (2.5–5%) as compared to control, while the activities of these enzymes decreased with the higher application doses. Also, CBL improved the antioxidants activity and maize growth at the 2.5–5% application rate. However, the activity of the dehydrogenase significantly decreased (77%), particularly with CBH. We conclude that CBL, applied at 2.5–5% dose, can be utilized as a potential low cost and environmental friendly amendment for stabilization of toxic metals in contaminated mining soils and producing food/feed/biofuel crops with lower metal content.
Show more [+] Less [-]Effects of biochar on uptake, acquisition and translocation of silver nanoparticles in rice (Oryza sativa L.) in relation to growth, photosynthetic traits and nutrients displacement
2019
Abbas, Qumber | Liu, Guijian | Yousaf, Balal | Ali, Muhammad Ubaid | Ullah, Habib | Ahmed, Rafay
Rapid development in nanotechnology and incorporation of silver nanoparticles (AgNPs) in wide range of consumer products causing the considerable release of these NPs in the environment, leading concerns for ecosystem safety and plant health. In this study, rice (Oryza sativa) was exposed to AgNPs (0, 100, 200, 500 and 1000 mg L−1) in biochar amended (2 %w/v) and un-amended systems. Exposure of plants to AgNPs alone reduced the root and shoot length, biomass production, chlorophyll contents, photosynthesis related physiological parameters as well as macro-and micronutrients in a dose dependent manner. However, in case of biochar amendment, physiological parameters i.e., net photosynthesis rate, maximum photosynthesis rate, CO2 assimilation, dark respiration and stomatal conductance reduced only 16, 6, 7, 3 and 8%, respectively under AgNPs exposure at 1000 mg L−1 dose. Meanwhile, biochar at all exposure level of AgNPs decreased the bioaccumulation of Ag in rice root and shoot tissues, thus alleviated the phyto-toxic effects of NPs on plant growth. Moreover, results showed that biochar reduced the bioavailability of AgNPs by surface complexation, suppressing dissolution and release of toxic Ag+ ions in the growth medium. The presence of biochar at least decreased 2-fold tissue contents of Ag even at highest AgNPs (1000 mg L−1) concentration. These finding suggested that biochar derived from waste biomass resources can be used effectively to prevent the bioaccumulation and subsequent trophic level transfer of emerging Ag nano-pollutant in the environment.
Show more [+] Less [-]Interactive effects of O3 exposure on California black oak (Quercus kelloggii Newb.) seedlings with and without N amendment
2008
Handley, T. | Grulke, N.E.
We examined the short-term separate and combined effects of simulated nitrogen (N) deposition (fertilization) and ozone (O3) exposure on California black oak seedlings (Quercus kelloggii Newb.), an ecologically important tree of the San Bernardino Mountains downwind of Los Angeles. Realistic concentrations of O3 were found to cause statistically and biologically significant negative effects on plant health, including lowered photosynthetic ability, lowered water use efficiency, and increased leaf chlorosis and necrosis. When subjected to abrupt changes in light levels, O3-exposed plants showed both a slower and smaller response than O3-free plants. Fertilized plants exhibited a significantly greater pre-to post-treatment decline in A at saturated [CO2] and a significantly lower level of post-treatment chlorosis than unfertilized plants. Fertilization tended to reduce plant sensitivity to O3.
Show more [+] Less [-]Integrated effects of air pollution and climate change on forests: A northern hemisphere perspective
2007
Bytnerowicz, A. | Omasa, K. | Paoletti, E.
Many air pollutants and greenhouse gases have common sources, contribute to radiative balance, interact in the atmosphere, and affect ecosystems. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects may significantly differ from a sum of separate effects. We review the links between air pollution and climate change and their interactive effects on northern hemisphere forests. A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies. Simultaneous addressing air pollution and climate change effects on forests is an opportunity for capturing synergies in future research and monitoring.
Show more [+] Less [-]