Refine search
Results 1-10 of 29
Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success
2021
Duque, Laura | Poelman, Erik H. | Steffan-Dewenter, Ingolf
Tropospheric ozone is a highly oxidative pollutant with the potential to alter plant metabolism. The direct effects of ozone on plant phenotype may alter interactions with other organisms, such as pollinators, and, consequently, affect plant reproductive success. In a set of greenhouse experiments, we tested whether exposure of plants to a high level of ozone affected their phenological development, their attractiveness to four different pollinators (mason bees, honeybees, hoverflies and bumblebees) and, ultimately, their reproductive success. Exposure of plants to ozone accelerated flowering, particularly on plants that were growing in autumn, when light and temperature cues, that commonly promote flowering, were weaker. Simultaneously, there was a tendency for ozone-exposed plants to disinvest in vegetative growth. Plant exposure to ozone did not substantially affect pollinator preference, but bumblebees had a tendency to visit more flowers on ozone-exposed plants, an effect that was driven by the fact that these plants tended to have more open flowers, meaning a stronger attraction signal. Honeybees spent more time per flower on ozone-exposed plants than on control plants. Acceleration of flower production and the behavioural responses of pollinators to ozone-exposed plants resulted in retained reproductive fitness of plants pollinated by bumblebees, honeybees and mason bees, despite the negative effects of ozone on plant growth. Plants that were pollinated by hoverflies had a reduction in reproductive fitness in response to ozone. In a natural setting, acceleration of flowering by ozone might foster desynchronization between plant and pollinator activities. This can have a strong impact on plants with short flowering periods and on plants that, unlike wild mustard, lack compensatory mechanisms to cope with the absence of pollinator activity in the beginning of flowering.
Show more [+] Less [-]Effects of glyphosate spray-drift on plant flowering
2021
Strandberg, B. | Sørensen, P.B. | Bruus, M. | Bossi, R. | Dupont, Y.L. | Link, M. | Damgaard, C.F.
Recent studies have shown that sub-lethal doses of herbicides may affect plant flowering, however, no study has established a direct relationship between the concentrations of deposited herbicide and plant flowering. Here the aim was to investigate the relationship between herbicide spray drift deposited on non-target plants and plant flowering in a realistic agro-ecosystem setting. The concentrations of the herbicide glyphosate deposited on plants were estimated by measuring the concentration of a dye tracer applied together with the herbicide. The estimated maximal and average deposition of glyphosate within the experimental area corresponded to 30 g glyphosate/ha (2.08% of the label rate of 1440 g a.i./ha) and 2.4 g glyphosate/ha (0.15% label rate), respectively, and the concentrations decreased rapidly with increasing distance from the spraying track. However, there were not a unique relation between distance and deposition, which indicate that heterogeneities of turbulence, wind speed and/or direction can strongly influence the deposition from 1 min to another during spraying. The effects of glyphosate on cumulative flower numbers and flowering time were modelled using Gompertz growth models on four non-target species. Glyphosate had a significantly negative effect on the cumulative number of flowers on Trifolium pratense and Lotus corniculatus, whereas there were no significant effects on Trifolium repens, and a positive, but non-significant, effect on number of flowers on Cichorium intybus. Glyphosate did not affect the flowering time of any of the four species significantly. Lack of floral resources is known to be of major importance for pollinator declines. The implications of the presented results for pesticide risk assessment are discussed.
Show more [+] Less [-]Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success
2021
Duque, Laura | Poelman, Erik H. | Steffan-Dewenter, Ingolf
Tropospheric ozone is a highly oxidative pollutant with the potential to alter plant metabolism. The direct effects of ozone on plant phenotype may alter interactions with other organisms, such as pollinators, and, consequently, affect plant reproductive success. In a set of greenhouse experiments, we tested whether exposure of plants to a high level of ozone affected their phenological development, their attractiveness to four different pollinators (mason bees, honeybees, hoverflies and bumblebees) and, ultimately, their reproductive success. Exposure of plants to ozone accelerated flowering, particularly on plants that were growing in autumn, when light and temperature cues, that commonly promote flowering, were weaker. Simultaneously, there was a tendency for ozone-exposed plants to disinvest in vegetative growth. Plant exposure to ozone did not substantially affect pollinator preference, but bumblebees had a tendency to visit more flowers on ozone-exposed plants, an effect that was driven by the fact that these plants tended to have more open flowers, meaning a stronger attraction signal. Honeybees spent more time per flower on ozone-exposed plants than on control plants. Acceleration of flower production and the behavioural responses of pollinators to ozone-exposed plants resulted in retained reproductive fitness of plants pollinated by bumblebees, honeybees and mason bees, despite the negative effects of ozone on plant growth. Plants that were pollinated by hoverflies had a reduction in reproductive fitness in response to ozone. In a natural setting, acceleration of flowering by ozone might foster desynchronization between plant and pollinator activities. This can have a strong impact on plants with short flowering periods and on plants that, unlike wild mustard, lack compensatory mechanisms to cope with the absence of pollinator activity in the beginning of flowering.
Show more [+] Less [-]Ultra-trace level determination of neonicotinoids in honey as a tool for assessing environmental contamination
2019
Kammoun, Souad | Mulhauser, Blaise | Aebi, Alexandre | Mitchell, Edward A.D. | Glauser, Gaétan
Neonicotinoids and the closely related insecticide classes sulfoximines and butenolides have recently attracted growing concerns regarding their potential negative effects on non-target organisms, including pollinators such as bees. Indeed, it is becoming increasingly clear that these effects may occur at much lower levels than those considered to be safe for humans. To properly assess the ecological and environmental risks posed by neonicotinoids, appropriate sampling and analytical procedures are needed. Here, we used honey as reliable environmental sampler and developed an unprecedentedly sensitive method based on QuEChERS and UHPLC-MS/MS for the simultaneous determination of the nine neonicotinoids and related molecules currently present on the market (acetamiprid, clothianidin, dinotefuran, flupyradifurone, imidacloprid, nitenpyram, sulfoxaflor, thiacloprid and thiamethoxam). The method was validated and provided excellent levels of precision and accuracy over a wide concentration range of 3–4 orders of magnitude. Lowest limits of quantification (LLOQs) as low as 2–20 pg/g of honey depending on the analytes were reached. The method was then applied to the analysis of 36 honey samples from various regions of the World which had already been analysed for the five most common neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid and thiamethoxam) in a previous study. This allowed us to determine the long-term stability (i.e. up to 40 months) of these molecules in honey, both at room temperature and −20 °C. We found that the five pesticides were stable over a period of several years at −20 °C, but that acetamiprid and thiacloprid partially degraded at room temperature. Finally, we also measured the levels of dinotefuran, nitenpyram, sulfoxaflor and flupyradifurone and found that 28% of the samples were contaminated by at least one of these pesticides.
Show more [+] Less [-]Transgenic Bt cotton expressing Cry1Ac/Cry2Ab or Cry1Ac/EPSPS does not affect the plant bug Adelphocoris suturalis or the pollinating beetle Haptoncus luteolus
2018
Niu, Lin | Tian, Zhenya | Liu, Hui | Zhou, Hao | Ma, Weihua | Lei, Chaoliang | Chen, Lizhen
The widespread cultivation of transgenic Bt cotton makes assessing the potential effects of this recombinant crop on non-target organisms a priority. However, the effect of Bt cotton on many insects is currently virtually unknown. The plant bug Adelphocoris suturalis is now a major pest of cotton in southern China and the beetle Haptoncus luteolus is one of the most ancient cotton pollinators. We conducted laboratory experiments to evaluate the toxicity of the Bt cotton varieties ZMSJ, which expresses the toxins Cry1Ac and Cry2Ab, and ZMKCKC, which expresses Cry1Ac and EPSPS, on adult A. suturalis and H. luteolus. No significant increase in the mortality of either species was detected after feeding on Bt cotton leaves or pollen for 7 days. Trace amounts of Cry1Ac and Cry2Ab proteins could be detected in both species but in vitro binding experiments found no evidence of Cry1Ac and Cry2Ab binding proteins. These results demonstrate that feeding on the leaves or pollen of these two Bt cotton varieties has no toxic effects on adult A. suturalis or H. luteolus.
Show more [+] Less [-]The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees
2013
Meindl, George A. | Ashman, Tia-Lynn
Metals in soil are known to negatively affect the health of many groups of organisms, but it is unclear whether they can affect plant-pollinator interactions, and whether pollinators that visit plants growing on contaminated soils are at risk of ingesting potentially toxic resources. We address whether the presence of metals in nectar alters foraging behavior by bumblebees by manipulating nectar with one of two common soil contaminants (Al or Ni) in flowers of Impatiens capensis (Balsaminaceae). While the presence of Al in nectar did not influence foraging patterns by bumblebees, flowers containing Ni nectar solutions were visited for shorter time periods relative to controls, and discouraged bees from visiting nearby Ni-contaminated flowers. However, because bumblebees still visited these flowers, they likely ingested a potentially toxic resource. Our findings suggest that soil metals could cascade to negatively affect pollinators in metal contaminated environments.
Show more [+] Less [-]Toxicokinetics of three insecticides in the female adult solitary bee Osmia bicornis
2022
Mokkapati, Jaya Sravanthi | Bednarska, Agnieszka J. | Choczyński, Maciej | Laskowski, Ryszard
The worldwide decline of pollinators is of growing concern and has been related to the use of insecticides. Solitary bees are potentially exposed to many insecticides through contaminated pollen and/or nectar. The kinetics of these compounds in solitary bees is, however, unknown, limiting the use of these important pollinators in pesticide regulations. Here, the toxicokinetics (TK) of chlorpyrifos (as Dursban 480 EC), cypermethrin (Sherpa 100 EC), and acetamiprid (Mospilan 20 SP) was studied for the first time in Osmia bicornis females at sublethal concentrations (near LC₂₀ₛ). The TK of the insecticides was analysed in bees continuously exposed to insecticide-contaminated food in the uptake phase followed by feeding with clean food in the decontamination phase. The TK models differed substantially between the insecticides. Acetamiprid followed the classic one-compartment model with gradual accumulation during the uptake phase followed by depuration during the decontamination phase. Cypermethrin accumulated rapidly in the first two days and then its concentration decreased slowly. Chlorpyrifos accumulated similarly rapidly but no substantial depuration was found until the end of the experiment. Our study demonstrates that some insecticides can harm solitary bees when exposed continuously even at trace concentrations in food because of their constant accumulation leading to time-reinforced toxicity.
Show more [+] Less [-]Apis mellifera and Melipona scutellaris exhibit differential sensitivity to thiamethoxam
2021
Miotelo, Lucas | Mendes dos Reis, Ana Luiza | Malaquias, José Bruno | Malaspina, Osmar | Roat, Thaisa Cristina
Apis mellifera is a pollinator insect model in pesticide risk assessment tests for bees. However, given the economic and ecological importance of stingless bees such as Melipona scutellaris in the Neotropical region, as well as the lack of studies on the effect of insecticides on these bees, toxicity tests for stingless bees should be carried out to understand whether insecticides affect both species of bees in the same manner. Thus, the present study quantified the differential sensitivity of the bees M. scutellaris and A. mellifera to the oral ingestion of the insecticide thiamethoxam by determining the mean lethal concentration (LC₅₀), mean lethal time (LT₅₀), and their effect on the insecticide target organ, the brain. The results showed that the stingless bee is more sensitive to the insecticide than A. mellifera, with a lower LC₅₀ of 0.0543 ng active ingredient (a.i.)/μL for the stingless bee compared to 0.227 ng a.i./μL for A. mellifera. When exposed to a sublethal concentration, morphological and ultrastructural analyses were performed and evidenced a significant increase in spaces between nerve cells of both species. Thus, A. mellifera is not the most appropriate or unique model to determine the toxicity of insecticides to stingless bees.
Show more [+] Less [-]Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success
2021
Duque, Laura | Poelman, Erik H. | Steffan-Dewenter, Ingolf
Tropospheric ozone is a highly oxidative pollutant with the potential to alter plant metabolism. The direct effects of ozone on plant phenotype may alter interactions with other organisms, such as pollinators, and, consequently, affect plant reproductive success. In a set of greenhouse experiments, we tested whether exposure of plants to a high level of ozone affected their phenological development, their attractiveness to four different pollinators (mason bees, honeybees, hoverflies and bumblebees) and, ultimately, their reproductive success. Exposure of plants to ozone accelerated flowering, particularly on plants that were growing in autumn, when light and temperature cues, that commonly promote flowering, were weaker. Simultaneously, there was a tendency for ozone-exposed plants to disinvest in vegetative growth. Plant exposure to ozone did not substantially affect pollinator preference, but bumblebees had a tendency to visit more flowers on ozone-exposed plants, an effect that was driven by the fact that these plants tended to have more open flowers, meaning a stronger attraction signal. Honeybees spent more time per flower on ozone-exposed plants than on control plants. Acceleration of flower production and the behavioural responses of pollinators to ozone-exposed plants resulted in retained reproductive fitness of plants pollinated by bumblebees, honeybees and mason bees, despite the negative effects of ozone on plant growth. Plants that were pollinated by hoverflies had a reduction in reproductive fitness in response to ozone. In a natural setting, acceleration of flowering by ozone might foster desynchronization between plant and pollinator activities. This can have a strong impact on plants with short flowering periods and on plants that, unlike wild mustard, lack compensatory mechanisms to cope with the absence of pollinator activity in the beginning of flowering.
Show more [+] Less [-]Use of nest bundles to monitor agrochemical exposure and effects among cavity nesting pollinators
2021
Peterson, Eric M. | Thompson, Kelsey N. | Shaw, Katherine R. | Tomlinson, Caleb | Longing, Scott D. | Smith, Philip N.
Cavity nesting bees are proficient and important pollinators that can augment or replace honey bee pollination services for some crops. Relatively little is known about specific pesticide concentrations present in cavity nesting insect reed matrices and associated potential risks to cavity nesting bees. Nesting substrates (Phragmites australis reeds in bundles) were deployed in an agriculturally intensive landscape to evaluate colonization and agrochemical exposure among cavity nesting pollinators over two consecutive field seasons. Composition of insect species colonizing reeds within nest bundles varied considerably; those placed near beef cattle feed yards were dominated by wasps (93% of the total number of individuals occupying reed nest bundles), whereas nest bundles deployed in cropland-dominated landscapes were colonized primarily by leaf cutter bees (71%). All nesting/brood matrices in reeds (mud, leaves, brood, pollen) contained agrochemicals. Mud used in brood chamber construction at feed yard sites contained 21 of 23 agrochemicals included in analysis and >70% of leaf substrate stored in reeds contained at least one agrochemical. Moxidectin was most frequently detected across all reed matrices from feed yard sites, and moxidectin concentrations in nonviable larvae were more than four times higher than those quantified in viable larvae. Agrochemical concentrations in leaf material and pollen were also quantified at levels that may have induced toxic effects among developing larvae. To our knowledge, this is the first study to characterize agrochemical concentrations in multiple reed matrices provisioned by cavity-nesting insects. Use of nest bundles revealed that cavity nesting pollinators in agriculturally intensive regions are exposed to agrochemicals during all life stages, at relatively high frequencies, and at potentially lethal concentrations. These results demonstrate the utility of nest bundles for characterizing risks to cavity nesting insects inhabiting agriculturally intensive regions.
Show more [+] Less [-]