Refine search
Results 1-10 of 418
Spatial variation in the accumulation of POPs and mercury in bottlenose dolphins of the Lower Florida Keys and the coastal Everglades (South Florida) Full text
2017
Damseaux, France | Kiszka, J. | Heithaus, M.R. | Scholl, Georges | Eppe, Gauthier | Thomé, Jean-Pierre | Lewis, J. | Hao, Wensi | Fontaine, M.C. | Das, Krishna | MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
peer reviewed | The bottlenose dolphin (Tursiops truncatus) is an upper trophic level predator and the most common cetacean species found in nearshore waters of southern Florida, including the Lower Florida Keys (LFK) and the Florida Coastal Everglades (FCE). The objective of this study was to assess contamination levels of total mercury (T-Hg) in skin and persistent organic pollutants (PCBs, PBDEs, DDXs, HCHs, HCB, Σ PCDD/Fs and Σ DL-PCBs) in blubber samples of bottlenose dolphins from LFK (n = 27) and FCE (n = 24). PCBs were the major class of compounds found in bottlenose dolphin blubber and were higher in individuals from LFK (Σ 6 PCBs LFK males: 13421 ± 7730 ng.g-1 lipids, Σ 6 PCBs LFK females: 9683 ± 19007 ng.g-1 lipids) than from FCE (Σ 6 PCBs FCE males: 5638 ng.g-1 ± 3627 lipids, Σ 6 PCBs FCE females: 1427 ± 908 ng.g-1 lipids). These levels were lower than previously published data from the southeastern USA. The Σ DL-PCBs were the most prevalent pollutants of dioxin and dioxin like compounds (Σ DL-PCBs LFK: 739 ng.g-1 lipids, Σ DL-PCBs FCE: 183 ng.g-1 lipids) since PCDD/F concentrations were low for both locations (mean 0.1 ng.g-1 lipids for LFK and FCE dolphins). The toxicity equivalences of PCDD/Fs and DL-PCBs expressed as TEQ in LFK and FCE dolphins is mainly expressed by DL-PCBs (81% LFK - 65% FCE). T-Hg concentrations in skin were significantly higher in FCE (FCE median 9314 ng.g-1 dw) compared to LFK dolphins (LFK median 2941 ng.g-1 dw). These bottlenose dolphins concentrations are the highest recorded in the southeastern USA, and may be explained, at least partially, by the biogeochemistry of the Everglades and mangrove sedimentary habitats that create favourable conditions for the retention of mercury and make it available at high concentrations for aquatic predators. | Florida Coastal Everglades LTER Program (DBI0620409, DEB9910514, DRL0959026); Florida International University’s Marine Sciences Program
Show more [+] Less [-]Role of snow in the fate of gaseous and particulate exhaust pollutants from gasoline-powered vehicles Full text
2017
Nazarenko, Yevgen | Fournier, Sébastien | Kurien, Uday | Rangel-Alvarado, Rodrigo Benjamin | Nepotchatykh, Oleg | Seers, Patrice | Ariya, Parisa A.
Little is known about pollution in urban snow and how aerosol and gaseous air pollutants interact with the urban snowpack. Here we investigate interactions of exhaust pollution with snow at low ambient temperature using fresh snow in a temperature-controlled chamber. A gasoline-powered engine from a modern light duty vehicle generated the exhaust and was operated in homogeneous and stratified engine regimes. We determined that, within a timescale of 30 min, snow takes up from the exhaust a large mass of organic pollutants and aerosol particles, which were observed by electron microscopy, mass spectrometry and aerosol sizers. Specifically, the concentration of total organic carbon in the exposed snow increased from 0.948 ± 0.009 to 1.828 ± 0.001 mg/L (homogeneous engine regime) and from 0.275 ± 0.005 to 0.514 ± 0.008 mg/L (stratified engine regime). The concentrations of benzene, toluene and 13 out of 16 measured polycyclic aromatic hydrocarbons (PAHs), particularly naphthalene, benz[a]anthracene, chrysene and benzo[a]pyrene in snow increased upon exposure from near the detection limit to 0.529 ± 0.058, 1.840 ± 0.200, 0.176 ± 0.020, 0.020 ± 0.005, 0.025 ± 0.005 and 0.028 ± 0.005 ng/kg, respectively, for the homogeneous regime. After contact with snow, 50–400 nm particles were present with higher relative abundance compared to the smaller nanoparticles (<50 nm), for the homogeneous regime. The lowering of temperature from 25 ± 1 °C to (−8) – (−10) ± 1 °C decreased the median mode diameter of the exhaust aerosol particles from 69 nm to 57 nm (p < 0.1) and addition of snow to 51 nm (p < 0.1) for the stratified regime, but increased it from 20 nm to 27 nm (p < 0.1) for the homogeneous regime. Future studies should focus on cycling of exhaust-derived pollutants between the atmosphere and cryosphere. The role of the effects we discovered should be evaluated as part of assessment of pollutant loads and exposures in regions with a defined winter season.
Show more [+] Less [-]Particulate and gaseous pollutants on inflammation, thrombosis, and autonomic imbalance in subjects at risk for cardiovascular disease Full text
2017
Chen, Szu-Ying | Chan, Chang-Chuan | Su, Ta-Chen
This study examined effects of short-term urban air pollution exposures on inflammation, thrombosis, and autonomic imbalance in subjects at risk for cardiovascular disease (CVD). We enrolled 61 patients with multiple CVD risk factors and measured high sensitive C-reactive protein (hs-CRP), fibrinogen, D-dimer, and heart rate variability (HRV) indices. Two health examinations for each participant were performed during December 2002 through September 2003. Changes in inflammation and thrombotic markers and HRV indices with exposures to PM2.5, organic carbon (OC), elemental carbon (EC), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) at 1- to 3-day lags were analyzed using mixed models. The results showed inflammatory and thrombotic markers increased with 1- to 3-day lagged PM2.5 components and gaseous pollutants exposures. hs-CRP maximally increased 0.19 [95% confidence interval (CI): 0.07–0.31] and 0.15 (95% CI: 0.05–0.24) mg/L for an interquartile range (IQR) of 1-day lagged SO2 (2.3 ppb) and CO (0.5 ppm), respectively. D-dimer maximally increased 1.05 (95% CI: 0.13–1.75), 0.72 (95% CI: 0.09–1.21), 0.92 (95% CI: 0.13–1.50), and 0.90 (95% CI: 0.07–1.61) mg/dL for an IQR of 1-day lagged OC (3.9 μg/m3), EC (2.0 μg/m3), SO2, and NO2 (13.4 ppb), respectively. The HRV indices, including low frequency, very low frequency, and the ratio of low frequency to high frequency decreased 19.8 (95% CI: 4.4–32.7), 12.9 (95% CI: 0.8–23.4), and 17.6 (95% CI: 5.4–28.2)% for an IQR of 1-day lagged PM2.5 (20.2 μg/m3), respectively. Our findings demonstrated PM2.5 components and gaseous pollutants exert prolonged inflammatory and thrombotic reactions, while PM2.5 exert an immediate autonomic imbalance.
Show more [+] Less [-]Effects of nano-SiO2 on the adsorption of chiral metalaxyl to agricultural soils Full text
2017
Huang, Junxing | Liang, Chuanzhou | Zhang, Xu
The application of nanotechnology in agriculture, pesticide delivery and other related fields increases the occurrence of engineered nanoparticles (ENPs) in soil. Since ENPs have larger surface areas and normally a high adsorption capacity for organic pollutants, they are thought to influence the transport of pesticides in soils and thereafter influence the uptake and transformation of pesticides. The adsorption pattern of racemic-metalaxyl on agricultural soils including kinetics and isotherms changed in the presence of nano-SiO2. The adsorption of racemic-metalaxyl on agricultural soil was not enantioselective, in either the presence or the absence of SiO2. The adsorption of racemic-metalaxyl on SiO2 decreased to some extent in soil-SiO2 mixture, and the absolute decrease was dependent on soil properties. The decreased adsorption of metalaxyl on SiO2 in soil-SiO2 mixture arose from the competitive adsorption of soil-dissolved organic matter and the different dispersion and aggregation behaviors of SiO2 in the presence of soil. Interactions between SiO2 and soil particles also contributed to the decreased adsorption of metalaxyl on SiO2, and the interactions were analyzed by extended Derjaguin–Landau–Verwey–Overbeek theory. The results showed that the presence of nano-particles in soils could decrease the mobility of pesticides in soils and that this effect varied with different soil compositions.
Show more [+] Less [-]Novel pollutants in the Moscow atmosphere in winter period: Gas chromatography-high resolution time-of-flight mass spectrometry study Full text
2017
Mazur, D.M. | Polyakova, O.V. | Artaev, V.B. | Lebedev, A.T.
The most common mass spectrometry approach analyzing contamination of the environment deals with targeted analysis, i.e. detection and quantification of the selected (priority) pollutants. However non-targeted analysis is becoming more often the method of choice for environmental chemists. It involves implementation of modern analytical instrumentation allowing for comprehensive detection and identification of the wide variety of compounds of the environmental interest present in the sample, such as pharmaceuticals and their metabolites, musks, nanomaterials, perfluorinated compounds, hormones, disinfection by-products, flame retardants, personal care products, and many others emerging contaminants. The paper presents the results of detection and identification of previously unreported organic compounds in snow samples collected in Moscow in March 2016. The snow analysis allows evaluation of long-term air pollution in the winter period. Gas chromatography coupled to a high resolution time-of-flight mass spectrometer has enabled us with capability to detect and identify such novel analytes as iodinated compounds, polychlorinated anisoles and even Ni-containing organic complex, which are unexpected in environmental samples. Some considerations concerning the possible sources of origin of these compounds in the environment are discussed.
Show more [+] Less [-]The role of melting alpine glaciers in mercury export and transport: An intensive sampling campaign in the Qugaqie Basin, inland Tibetan Plateau Full text
2017
Sun, Xuejun | Wang, Kang | Kang, Shichang | Guo, Junming | Zhang, Guoshuai | Huang, Jie | Cong, Zhiyuan | Sun, Shiwei | Zhang, Qianggong
Glaciers, particularly alpine glaciers, have been receding globally at an accelerated rate in recent decades. The glacial melt-induced release of pollutants (e.g., mercury) and its potential impact on the atmosphere and glacier-fed ecosystems has drawn increasing concerns. During 15th–20th August, 2011, an intensive sampling campaign was conducted in Qugaqie Basin (QB), a typical high mountain glacierized catchment in the inland Tibetan Plateau, to investigate the export and transport of mercury from glacier to runoff. The total mercury (THg) level in Zhadang (ZD) glacier ranged from <1 to 20.8 ng L−1, and was slightly higher than levels measured in glacier melt water and the glacier-fed river. Particulate Hg (PHg) was the predominant form of Hg in all sampled environmental matrices. Mercury concentration in Qugaqie River (QR) was characterized by a clear diurnal variation which is linked to glacier melt. The estimated annual Hg exports by ZD glacier, the upper river basin and the entire QB were 8.76, 7.3 and 157.85 g, respectively, with respective yields of 4.61, 0.99 and 2.74 μg m−2 yr−1. Unique landforms and significant gradients from the glacier terminus to QB estuary might promote weathering and erosion, thereby controlling the transport of total suspended particulates (TSP) and PHg. In comparison with other glacier-fed rivers, QB has a small Hg export yet remarkably high Hg yield, underlining the significant impact of melting alpine glaciers on regional Hg biogeochemical cycles. Such impacts are expected to be enhanced in high altitude regions under the changing climate.
Show more [+] Less [-]Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions Full text
2017
Ochoa-Hueso, Raúl | Munzi, Silvana | Alonso, Rocío | Arróniz-Crespo, María | Avila, Anna | Bermejo, Victoria | Bobbink, Roland | Branquinho, Cristina | Concostrina Zubiri, Laura | Cruz Mínguez, Cristina | Cruz de Carvalho, Ricardo | De Marco, Alessandra | Dias, Teresa | Elustondo, David | Elvira, Susana | Estébanez, Belén | Fusaro, Lina | Gerosa, Giacomo | Izquieta-Rojano, Sheila | Lo Cascio, Mauro | Marzuoli, Riccardo | Matos, Paula | Mereu, Simone | Merino, José | Morillas, Lourdes | Nunes, Alice | Paoletti, Elena | Paoli, Luca | Pinho, Pedro | Rogers, Isabel B. | Santos, Arthur | Sicard, Pierre | Stevens, Carly J. | Theobald, Mark R.
Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions Full text
2017
Ochoa-Hueso, Raúl | Munzi, Silvana | Alonso, Rocío | Arróniz-Crespo, María | Avila, Anna | Bermejo, Victoria | Bobbink, Roland | Branquinho, Cristina | Concostrina Zubiri, Laura | Cruz Mínguez, Cristina | Cruz de Carvalho, Ricardo | De Marco, Alessandra | Dias, Teresa | Elustondo, David | Elvira, Susana | Estébanez, Belén | Fusaro, Lina | Gerosa, Giacomo | Izquieta-Rojano, Sheila | Lo Cascio, Mauro | Marzuoli, Riccardo | Matos, Paula | Mereu, Simone | Merino, José | Morillas, Lourdes | Nunes, Alice | Paoletti, Elena | Paoli, Luca | Pinho, Pedro | Rogers, Isabel B. | Santos, Arthur | Sicard, Pierre | Stevens, Carly J. | Theobald, Mark R.
Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin.
Show more [+] Less [-]Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions Full text
2017
Ochoa Hueso, Raúl | Munzi, Silvana | Alonso, Rocío | Arróniz-Crespo, María | Avila, Anna | Bermejo, Victoria | Bobbink, Roland | Branquinho, Cristina | Concostrina-Zubiri, Laura | Cruz, Cristina | Cruz de Carvalho, Ricardo | De Marco, Alessandra | Teresa, Dias | Elustondo, David | Elvira, Susana | Estebanez, Belén | Fusaro, Lina | Gerosa, Giacomo | Izquieta-Rojano, Sheila | Lo Cascio, Mauro | Marzuoli, Riccardo | Matos, Paula | Mereu, Simone | Merino, José | Morillas, Lourdes | Nunes, Alice | Paoletti, Elena | Paoli, Luca | Pinho, Pedro | Rogers, Isabel | Santos, Arthur | Sicard, Pierre | Stevens, Carly | Theobald, Mark | Biología
Los ecosistemas de la cuenca mediterránea, su biodiversidad única y los servicios clave que brindan están actualmente en riesgo debido a la contaminación del aire y el cambio climático; sin embargo, solo un número limitado de estudios aislados y geográficamente restringidos han abordado este tema, a menudo con resultados contrastantes. Las particularidades de la contaminación del aire en esta región incluyen altos niveles de O3 debido a las altas temperaturas del aire y la radiación solar, la estabilidad de las masas de aire y el predominio de la deposición seca de nitrógeno sobre la húmeda. Además, los factores abióticos y bióticos únicos (por ejemplo, el clima, el tipo de vegetación, la relevancia de los aportes de polvo del Sahara) que modulan la respuesta de los ecosistemas mediterráneos en diversas escalas espaciotemporales hacen que sea difícil comprender y, por tanto, predecir, las consecuencias de las actividades humanas que causan la contaminación del aire. Contaminación en la Cuenca Mediterránea. Por lo tanto, existe una necesidad urgente de implementar plataformas experimentales y de investigación coordinadas junto con redes más amplias de monitoreo ambiental en la región. En particular, es crucial contar con una red sólida de monitoreo de deposiciones junto con estimaciones de modelos, que posiblemente incluyan un conjunto de biomonitores comunes (idealmente criptógamas, un componente importante de la vegetación mediterránea), para ayudar a perfeccionar los mapas de deposición de contaminantes. Además, se debe prestar mayor atención a las medidas de diversidad funcional en futuros estudios sobre la contaminación del aire y el cambio climático para establecer el vínculo necesario entre la biodiversidad y la provisión de servicios ecosistémicos en los ecosistemas mediterráneos. A través de un esfuerzo coordinado, la comunidad científica mediterránea puede llenar los vacíos mencionados anteriormente y alcanzar una mayor comprensión de los mecanismos subyacentes a los efectos combinados de la contaminación del aire y el cambio climático en la cuenca mediterránea.
Show more [+] Less [-]Bacteria contribute to pesticide degradation in cryoconite holes in an Alpine glacier Full text
2017
Ferrario, Claudia | Pittino, Francesca | Tagliaferri, Ilario | Gandolfi, Isabella | Bestetti, Giuseppina | Azzoni, Roberto Sergio | Diolaiuti, Guglielmina | Franzetti, Andrea | Ambrosini, Roberto | Villa, Sara
Organic contaminants deposited on glacier snow and ice are subject to partitioning and degradation processes that determine their environmental fate and, consequently, their accumulation in ice bodies. Among these processes, organic compound metabolism by supraglacial bacteria has investigated to a lesser extent than photo- and chemical degradation. We investigated biodegradation of the organophosphorus insecticide chlorpyrifos (CPF), a xenobiotic tracer that accumulates on glaciers after atmospheric medium- and long-range transport, by installing in situ microcosms on an Alpine glacier to simulate cryoconite hole systems. We found that biodegradation contributed to the removal of CPF from the glacier surface more than photo- and chemical degradation. The high concentration of CPF (2–3 μg g−1 w.w.) detected in cryoconite holes and the estimated half-life of this compound (35–69 days in glacier environment) indicated that biodegradation can significantly reduce CPF concentrations on glaciers and its runoff to downstream ecosystems. The metabolic versatility of cryoconite bacteria suggests that these habitats might contribute to the degradation of a wide class of pollutants. We therefore propose that cryoconite acts as a “biofilter” by accumulating both pollutants and biodegradative microbial communities. The contribution of cryoconite to the removal of organic pollutants should be included in models predicting the environmental fate of these compounds in cold areas.
Show more [+] Less [-]Evaluation of short-term mortality attributable to particulate matter pollution in Spain Full text
2017
Ortiz, Cristina | Linares, Cristina | Carmona, Rocio | Diaz, Julio
According to the WHO, 3 million deaths are attributable to air pollution due to particulate matter (PM) world-wide. However, there are no specific updated studies which calculate short-term PM-related cause specific mortality in Spain. The objective is to quantify the relative risks (RRs) and attributable risks (ARs) of daily mortality associated with PM10 concentrations, registered in Spanish provinces and to calculate the number of PM-related deaths. We calculated daily mortality due to natural (ICD-10: A00 R99), circulatory (ICD-10: I00 I99) and respiratory causes (ICD-10: J00 J99) for each province across the period 2000–2009. Mean daily concentrations of PM10, NO2 and O3 was used. For the estimate of RRs and ARs, we used generalised linear models with a Poisson link. A meta-analysis was used to estimate RRs and ARs in the provinces with statically significant results. The overall RRs obtained for these provinces, corresponding to increases of 10 μ g/m³ in PM10 concentrations were 1.009 (95% CI: 1.006 1011) for natural, 1.026 (95% CI: 1.019 1033) for respiratory, and 1.009 (95% CI: 1.006 1012) for circulatory-cause mortality. This amounted to an annual overall total of 2683 deaths (95% CI: 852 4354) due to natural, 651 (95% CI: 359 1026) due to respiratory, and 556 (95% CI: 116 1012) due to circulatory causes, with 90% of this mortality lying below the WHO guideline values. This study provides an updated estimate of the effect had by this type of pollutant on causes of mortality, and constitutes an important basis for reinforcing public health measures.
Show more [+] Less [-]Exposure to ultrafine particles in different transport modes in the city of Rome Full text
2017
Grana, Mario | Toschi, Nicola | Vicentini, Laura | Pietroiusti, Antonio | Magrini, Andrea
There is evidence of adverse health impacts from human exposure to particulate air pollution, including increased rates of respiratory and cardiovascular illness, hospitalizations, and pre-mature mortality. Most recent hypotheses assign an important role to ultrafine particles (UFP) (<0.1 μm) and to associated transition metals (in particular Fe). In a large city like Rome, where many active people spend more than one hour per day in private or public transportation, it may be important to evaluate the level of exposure to harmful pollutants which occurs during urban travelling. In this context, the aim of this work was to examine the relative contribution of different transport modes to total daily exposure.We performed experimental measurements during both morning and evening traffic peak hours throughout the winter season (December 2013–March 2014), for a total of 98 trips. Our results suggest that the lowest UFP exposures are experienced by underground train commuters, with an average number concentration of 14 134 cm−3, and are largely a reflection of the routes being at greater distance from vehicular traffic. Motorcyclists experienced significantly higher average concentrations (73 168 cm−3) than all other exposure classes, and this is most likely a result of the presence of high-concentration and short-duration peaks which do not occur when the same routes are traveled by car. UFP concentrations in subway train environments were found to be comparable to urban background levels. Still, in underground trains we found the highest values of PM10 mass concentration with a maximum value of 422 μg/m3. PM10 concentration in trains was found to be four and two times higher than what was measured in car and motorbike trips, respectively. Transport mode contribution to total integrated UFP daily exposure was found to be 16.3%–20.9% while travelling by car, 28.7%for motorbike trips, and 8.7% for subway trips. Due to lower exposure times, commuting by car and motorbike is comparable to other daily activities in terms of exposure. Our data can provide relevant information for transport decision-making and increase environmental awareness in the hope that the information about inhaled pollutants can translate into a more rational approach to urban travelling.
Show more [+] Less [-]