Refine search
Results 1-10 of 70
Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil Full text
2013
Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil Full text
2013
The objective of the present study was to characterise the polycyclic aromatic hydrocarbons (PAHs) content of an aged contaminated soil and to propose remediation techniques using cyclodextrins (CDs). Four CDs solutions were tested as soil decontamination tool and proved more efficient in extracting PAHs than when an aqueous solution was used; especially two chemically modified CDs resulted in higher extraction percentages than natural β-CD. The highest extraction percentages were obtained for 3-ring PAHs, because of the appropriate size and shape of these compounds relative to those of the hydrophobic cavities of the CDs studied. A detailed mechanistic interpretation of the chemical modification of CDs on the extraction of the different PAHs has been performed, and connected with the role that the different hydrophobicities of the PAHs play in the extraction behaviour observed for the 16 PAHs, limiting their accessibility and the remaining risk of those PAHs not extractable by CDs.
Show more [+] Less [-]Comparative effects of several cyclodextrins on the extraction of PAHs from an aged contaminated soil Full text
2013
Sánchez Trujillo, Mª Antonia | Morillo González, Esmeralda | Villaverde Capellán, J. | Lacorte Bruguera, Silvia
7 páginas.-- 3 figuras.-- 2 tablas.-- 52 referencias.-- Supplementary data | The objective of the present study was to characterise the polycyclic aromatic hydrocarbons (PAHs) content of an aged contaminated soil and to propose remediation techniques using cyclodextrins (CDs). Four CDs solutions were tested as soil decontamination tool and proved more efficient in extracting PAHs than when an aqueous solution was used; especially two chemically modified CDs resulted in higher extraction percentages than natural β-CD. The highest extraction percentages were obtained for 3-ring PAHs, because of the appropriate size and shape of these compounds relative to those of the hydrophobic cavities of the CDs studied. A detailed mechanistic interpretation of the chemical modification of CDs on the extraction of the different PAHs has been performed, and connected with the role that the different hydrophobicities of the PAHs play in the extraction behaviour observed for the 16 PAHs, limiting their accessibility and the remaining risk of those PAHs not extractable by CDs. © 2013 Elsevier Ltd. All rights reserved. | The authors thank to Dr. J.R. Gallego from the Universidad de Oviedo for providing the contaminated soil sample. Support from projects CTM2006-04626 and CTM2009-07335, Spanish Ministry of Science and Innovation (co-funded by Fondo Europeo de Desarrollo Regional, FEDER), are greatly appreciated. M.A. Sánchez-Trujillo acknowledges a research contract from CSIC (JAEPre 0800763) cofinanced by Fondo Social Europeo (FSE). | Peer Reviewed
Show more [+] Less [-]The impact of aluminium smelter shut-down on the concentration of fluoride in vegetation and soils Full text
2013
Brougham, Kate M. | Roberts, Stephen R. | Davison, A. (Alan) | Port, Gordon R.
Although a great deal is known about the deposition of fluoride on vegetation, and the hazards associated with uptake by grazing herbivores, little is known about what happens to the concentration of fluoride in vegetation and soil at polluted sites once deposition ceases. The closure of Anglesey Aluminium Metals Ltd smelter, in September 2009, provided a unique opportunity to study fluoride loading once deposition stopped. Fluoride was monitored in plants and soil within 1 km of the former emission source. Fluoride concentrations in a range of plant material had decreased to background levels of 10 mg F kg−1 after 36 weeks. Concentrations of fluoride in mineral-rich soils decreased steadily demonstrating their limited potential to act as contaminating sources of fluoride for forage uptake. There were significant differences in the rate of decline of fluoride concentrations between plant species.
Show more [+] Less [-]Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting Full text
2013
Beyer, W.N. | Green, C.E. | Beyer, M. | Chaney, R.L.
Historic emissions from two zinc smelters have injured the forest on Blue Mountain near Palmerton, Pennsylvania, USA. Seedlings of soybeans and five tree species were grown in a greenhouse in a series of mixtures of smelter-contaminated and reference soils and then phytotoxic thresholds were calculated. As little as 10% Palmerton soil mixed with reference soil killed or greatly stunted seedlings of most species. Zinc was the principal cause of the phytotoxicity to the tree seedlings, although Mn and Cd may also have been phytotoxic in the most contaminated soil mixtures. Calcium deficiency seemed to play a role in the observed phytotoxicity. Exposed soybeans showed symptoms of Mn toxicity. A test of the effect of liming on remediation of the Zn and Mn phytotoxicity caused a striking decrease in Sr-nitrate extractable metals in soils and demonstrated that liming was critical to remediation and restoration.
Show more [+] Less [-]Enhanced desorption of PCB and trace metal elements (Pb and Cu) from contaminated soils by saponin and EDDS mixed solution Full text
2013
Cao, Menghua | Hu, Yuan | Sun, Qian | Wang, Linling | Chen, Jing | Lu, Xiaohua
This study investigated the simultaneous desorption of trace metal elements and polychlorinated biphenyl (PCB) from mixed contaminated soil with a novel combination of biosurfactant saponin and biodegradable chelant S,S-ethylenediaminedisuccinic acid (EDDS). Results showed significant promotion and synergy on Pb, Cu and PCB desorption with the mixed solution of saponin and EDDS. The maximal desorption of Pb, Cu and PCB were achieved 99.8%, 85.7% and 45.7%, respectively, by addition of 10 mM EDDS and 3000 mg L−1 saponin. The marked interaction between EDDS and saponin contributed to the synergy performance. The sorption of EDDS and saponin on soil was inhibited by each other. EDDS could enhance the complexation of metals with the saponin micelles and the solubilization capabilities of saponin micelles for PCB. Our study suggests the combination of saponin and EDDS would be a promising alternative for remediation of co-contaminated soils caused by hydrophobic organic compounds (HOCs) and metals.
Show more [+] Less [-]Phytoremediative urban design: Transforming a derelict and polluted harbour area into a green and productive neighbourhood Full text
2013
Wilschut, M. | Theuws, P.A.W. | Duchhart, I.
Many urban areas are polluted by industrial activities and waste disposal in landfills. Since conventional soil remediation techniques are costly and unsustainable, phytoremediation might offer an alternative. In this article, we explore how phytoremediation can be integrated into the transformation of urban post-industrial areas, while improving public space. Buiksloterham, a polluted and deprived industrial area in Amsterdam, serves as case study. Buiksloterham is polluted with heavy metals, with Zinc (Zn) concentrations being the highest. A regression-model for Alpine Pennycress (Thlaspi caerulescens) is used to estimate the time needed to remediate the site. This reveals a conflict in time between remediation and urban development. A research by design experiment shows how to overcome this conflict by dealing with polluted soil innovatively while emphasizing spatial and aesthetic qualities of the phytoremediation plant species. The resulting landscape framework integrates phytoremediation with biomass production and gives new ecological, economic and social value to Buiksloterham.
Show more [+] Less [-]Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers Full text
2013
Chi, Xiang-Qun | Zhang, Jun-Jie | Zhao, Shuo | Zhou, Ning-Yi
A consortium consisting of para-nitrophenol utilizer Pseudomonas sp. strain WBC-3, meta-nitrophenol utilizer Cupriavidus necator JMP134 and ortho-nitrophenol utilizer Alcaligenes sp. strain NyZ215 was inoculated into soil contaminated with three nitrophenol isomers for bioaugmentation. Accelerated removal of all nitrophenols was achieved in inoculated soils compared to un-inoculated soils, with complete removal of nitrophenols in inoculated soils occurring between 2 and 16 days. Real-time polymerase chain reaction (PCR) targeting nitrophenol-degradation functional genes indicated that the three strains survived and were stable over the course of the incubation period. The abundance of total indigenous bacteria (measured by 16S rRNA gene real-time PCR) was slightly negatively impacted by the nitrophenol contamination. Denaturing gradient gel electrophoresis profiles of total and group-specific indigenous community suggested a dynamic change in species richness occurred during the bioaugmentation process. Furthermore, Pareto–Lorenz curves and Community organization parameters indicated that the bioaugmentation process had little impact on species evenness within the microbial community.
Show more [+] Less [-]In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania Full text
2013
Zlatna, Romania is the site of longtime mining/smelting operations which have resulted in widespread metal pollution of the entire area. Previous studies have documented the contamination using traditional methods involving soil sample collection, digestion, and quantification via inductively coupled plasma atomic emission spectroscopy or atomic absorption. However, field portable X-ray fluorescence spectroscopy (PXRF) can accurately quantify contamination in-situ, in seconds. A PXRF spectrometer was used to scan 69 soil samples in Zlatna across multiple land use types. Each site was georeferenced with data inputted into a geographic information system for high resolution spatial interpolations. These models were laid over contemporary aerial imagery to evaluate the extent of pollution on an individual elemental basis. Pb, As, Co, Cu, and Cd exceeded governmental action limits in >50% of the sites scanned. The use of georeferenced PXRF data offers a powerful new tool for in-situ assessment of contaminated soils.
Show more [+] Less [-]Impact of Zn, Cu, Al and Fe on the partitioning and bioaccessibility of 14C-phenanthrene in soil Full text
2013
Obuekwe, Ifeyinwa S. | Semple, K. T. (Kirk T.)
This investigation considered the effects of Zn, Cu, Al and Fe (50 and 500 mg kg−1) on the loss, sequential extractability, using calcium chloride (CaCl2), hydroxypropyl-β-cyclodextrin (HPCD) and dichloromethane (DCM) and biodegradation of 14C-phenanthrene in soil over 63 d contact time. The key findings were that the presence of Cu and Al (500 mg kg−1) resulted in larger amounts of 14C-phenanthrene being extracted by CaCl2 and HPCD. Further, the CaCl2 + HPCD extractions directly predicted the biodegradation of the PAH in the presence of the metals, with the exception of 500 mg kg−1 Cu and Zn. The presence of high concentrations of some metals can impact on the mobility and accessibility of phenanthrene in soil, which may impact on the risk assessment of PAH contaminated soil.
Show more [+] Less [-]Removal effectiveness and mechanisms of naphthalene and heavy metals from artificially contaminated soil by iron chelate-activated persulfate Full text
2013
Yan, Dickson Y.S. | Lo, Irene M.C.
The effectiveness and mechanisms of naphthalene and metal removal from artificially contaminated soil by FeEDTA/FeEDDS-activated persulfate were investigated through batch experiments. Using FeEDTA-activated persulfate, higher naphthalene removal from the soil at 7 h was achieved (89%), compared with FeEDDS-activated persulfate (75%). The removal was mainly via the dissolution of naphthalene partitioned on mineral surfaces, followed by activated persulfate oxidation. Although EDDS is advantageous over EDTA in terms of biodegradability, it is not preferable for iron chelate-activated persulfate oxidation since persulfate was consumed to oxidize EDDS, resulting in persulfate inadequacy for naphthalene oxidation. Besides, 55 and 40% of naphthalene were removed by FeEDTA and FeEDDS alone, respectively. Particularly, 21 and 9% of naphthalene were degraded in the presence of FeEDTA and FeEDDS alone, respectively, which caused by electrons transfer among dissolved organic matter, Fe2+/Fe3+ and naphthalene. Over 35, 36 and 45% of Cu, Pb and Zn were removed using FeEDTA/FeEDDS-activated persulfate.
Show more [+] Less [-]Mycorrhizal colonization affects the elemental distribution in roots of Ni-hyperaccumulator Berkheya coddii Roessler Full text
2013
Orłowska, Elżbieta | Przybyłowicz, Wojciech | Orlowski, Dariusz | Mongwaketsi, Nametso P. | Turnau, Katarzyna | Mesjasz-Przybyłowicz, Jolanta
The effect of arbuscular mycorrhizal fungi (AMF) on the distribution and concentration of elements in roots of Ni-hyperaccumulating plant Berkheya coddii was studied. Micro-PIXE (particle-induced X-ray emission) analysis revealed significant differences between AMF-inoculated and non-inoculated plants as well as between main and lateral roots. The accumulation of P, K, Mn and Zn in the cortical layer of lateral roots of inoculated plants confirmed the important role of AMF in uptake and accumulation of these elements. Higher concentration of P, K, Fe, Ni, Cu and Zn in the vascular stele in roots of AMF-inoculated plants than in the non-inoculated ones indicates more efficient translocation of these elements to the aboveground parts of the plant. These findings indicate the necessity of including the influence of AMF in studies on the uptake of elements by plants and in industrial use of B. coddii for Ni extraction from polluted soils.
Show more [+] Less [-]