Refine search
Results 1-10 of 109
Transformation of m-aminophenol by birnessite (δ-MnO2) mediated oxidative processes: Reaction kinetics, pathways and toxicity assessment
2020
Huang, Wenqian | Wu, Guowei | Xiao, Hong | Song, Haiyan | Gan, Shuzhao | Ruan, Shuhong | Gao, Zhihong | Song, Jianzhong
The m-aminophenol (m-AP) is a widely used industrial chemical, which enters water, soils, and sediments with waste emissions. A common soil metal oxide, birnessite (δ-MnO2), was found to mediate the transformation of m-AP with fast rates under acidic conditions. Because of the highly complexity of the m-AP transformation, mechanism-based models were taken to fit the transformation kinetic process of m-AP. The results indicated that the transformation of m-AP with δ-MnO2 could be described by precursor complex formation rate-limiting model. The oxidative transformation of m-AP on the surface of δ-MnO2 was highly dependent on reactant concentrations, pH, temperature, and other co-solutes. The UV-VIS absorbance and mass spectra analysis indicated that the pathway leading to m-AP transformation may be the polymerization through the coupling reaction. The m-AP radicals were likely to be coupled by the covalent bonding between unsubstituted C2, C4 or C6 atoms in the m-AP aromatic rings to form oligomers as revealed by the results of activation energy and mass spectra. Furthermore, the toxicity assessment of the transformation productions indicated that the toxicity of m-AP to the E. coli K-12 could be reduced by MnO2 mediated transformation. The results are helpful for understanding the environmental behavior and potential risk of m-AP in natural environment.
Show more [+] Less [-]Microwave-assisted rapid degradation of DDT using nanohybrids of PANI with SnO2 derived from Psidium Guajava extract
2020
Riaz, Ufana | Zia, Jannatun
The present work reports microwave-assisted synthesis of SnO₂ nanoparticles via green route using Psidium Guajava extract. For the enhancement of catalytic activity, nanohybrids of SnO₂ were formulated using different ratios of polyaniline (PANI) via ultrasound-assisted chemical polymerization. Formation of nanohybrids was confirmed via IR and XPS studies. The UV–vis DRS spectra of PANI/SnO₂ revealed significant reduction in the optical band gap upon nanohybrid formation. Microwave-assisted catalytic efficiency of pure SnO₂, PANI, PANI/SnO₂ nanohybrids was investigated using DDT as a model persistent organic pollutant. The degradation efficiency of PANI/SnO₂ was found to increase with the increase in the loading of PANI. Around 87% of DDT degradation was achieved within a very short period of 12 min under microwave irradiation using PANI/SnO₂-50/50 as catalyst. The effect of DDT concentration was explored and the degradation efficiency of PANI/SnO₂-50/50 catalyst was noticed to be as high as 82% in presence of 100 mg/L of DDT. The effect of microwave power on the degradation efficiency revealed 79% degradation using the same nanohybrid when exposed to microwave irradiation for 5 min under 1110 W microwave power. Scavenging studies confirmed the generation of OH, O₂⁻ radicals. The fragments with m/z values as low as 86 and 70 were confirmed by LCMS analysis. Recyclability tests showed that PANI/SnO₂-50/50 nanohybrid exhibited 81% degradation of DDT (500 mg/L) even after the third cycle, which reflected high catalytic efficiency as well as remarkable stability of the catalyst. This green nanohybrid could therefore be effectively utilized for the rapid degradation of persistent organic pollutants.
Show more [+] Less [-]Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms
2020
Kik, Kinga | Bukowska, Bożena | Sicińska, Paulina
Civilization development is associated with the use of plastic. When plastic was introduced to the market, it was assumed that it was less toxic than glass. Recently, it is known that plastics are serious ecological problem they, do not degrade and remain in the environment for hundreds of years.Plastic may be degraded into micro-particles < 5000 nm in diameter, and further into nanoparticles (NPs) < 100 nm in diameter. NPs have been detected in air, soil, water and sludge.One of the most commonly used plastics is polystyrene (PS) - a product of polymerization of styrene monomers. It is used for the production of styrofoam and other products like toys, CDs and cup covers. In vivo and in vitro studies have suggested that polystyrene nanoparticles (PS-NPs) may penetrate organisms through several routes i.e. skin, respiratory and digestive tracts. They can be deposited in living organisms and accumulate further along the food chain. NPs are surrounded by “protein corona” that allows them penetrating cellular membranes and interacting with cellular structures. Depending on the cell type, NPs may be transported through pinocytosis, phagocytosis, or be transported passively. Currently there are no studies that would indicate a carcinogenic potential of PS-NPs. On the other hand, the PS monomer (styrene) was classified by the International Agency for Research on Cancer (IARC) as a potentially carcinogenic substance (carcinogenicity class B2).Despite of the widespread use of plastics and the presence of plastic NPs of secondary or primary nature, there are no studies that would assess the effect of those substances on human organism. This study was aimed at the review of the literature data concerning the formation of PS-NPs in the environment, their accumulation along the food chain, and their potential adverse effects on organisms on living various organization levels.
Show more [+] Less [-]Adverse effects of in vitro GenX exposure on rat thyroid cell viability, DNA integrity and thyroid-related genes expression
2020
Coperchini, Francesca | Croce, Laura | Denegri, Marco | Pignatti, Patrizia | Agozzino, Manuela | Netti, Giuseppe Stefano | Imbriani, Marcello | Rotondi, Mario | Chiovato, Luca
The hexafluoropropylene-oxide-dimer-acid (GenX) is a short-chain perfluoroalkyl substance that was recently introduced following the phase out of PFOA, as an alternative for the process of polymerization. GenX was detected at high concentrations in rivers, drinking water and in sera of exposed workers and recent findings suggested its potential dangerousness for human health.Aim of the study was to assess the consequences of GenX exposure on in vitro thyroid cells with particular attention to the effects on cell-viability, proliferation, DNA-damage and in the thyroid-related genes expression.FRTL-5 rat-thyroid cell line were incubated with increasing concentrations of GenX for 24 h, 48 h and 72 h to assess cell viability by WST-1. DNA-damage was assessed by comet assay and further confirmed by micronucleus assay. The proliferation of survived cells was measured by staining with crystal violet and evaluation of its optical density after incubation with SDS. Changes in TTF-1, Pax8, Tg, TSH-R, NIS and TPO genes expression were evaluated by RT-PCR.GenX exposure reduced FRTL-5 viability in a time and dose-dependent manner (24 h: ANOVA F = 22.286; p < 0.001; 48 h: F = 43.253, p < 0.001; 72 h: F = 49.708, p < 0.001). Moreover, GenX exerted a genotoxic effect, as assessed by comet assay (significant increase in tail-length, olive-tail-moment and percentage of tail-DNA) and micronucleus assay, both at cytotoxic and non-cytotoxic concentrations. Exposure to GenX at concentrations non-cytotoxic exerted a significant lowering of the expression of the regulatory gene TTF-1 (p < 0.05 versus untreated) and higher expression of Pax-8 (p < 0.05 versus untreated) and a down-regulation of NIS (p < 0.05 versus untreated). In addition, cells survived to GenX exposure showed a reduced re-proliferation ability (24 h: ANOVA F = 11,941; p < 0,001; 48 h: F = 93.11; p < 0.001; 72 h F = 21.65; p < 0.001).The exposure to GenX produces several toxic effects on thyroid cells in vitro. GenX is able to promote DNA-damage and to affect the expression of thyroid transcription-factor genes.
Show more [+] Less [-]Application of Ti/IrO2 electrode in the electrochemical oxidation of the TNT red water
2020
Jiang, Nan | Wang, Yuchao | Zhao, Quanlin | Ye, Zhengfang
Via the thermal sintering, a nanocrystalline IrO₂ coating was formed on the Ti substrate to successfully prepare a Ti/IrO₂ electrode. Based on the electrochemical analysis, the prepared Ti/IrO₂ electrode was found to have powerful oxidation effect on the organics in the TNT red water, where the nitro compound was oxidized through an irreversible electrochemical process at 0.6 V vs. SCE. According to the analysis of the nitro compound content, the UV–vis spectra, and the FTIR spectra of 2,4,6-trinitrotoluene (TNT) red water with electrolytic periods, the degradation mechanism of the dinitrotoluene sulfonate (DNTS) was developed. And the intermediates were characterized by UPLC-HRMS. The DNTS mainly occurred one electron transfer reaction on the Ti/IrO₂ electrode. At the early stage of the electrolysis, the polymerization of DNTS was mainly dominated. The generated polymer did not form a polymer film on the electrode surface, but instead it promoted a further reduction. After electrolyzing for 30 h, all NO₂ function group in the TNT red water was degraded completely.
Show more [+] Less [-]Quantification of azaarenes, hydroxylated azaarene derivatives, and other polar compounds released in urban runoff from two commercial sealcoat products
2019
Witter, Amy E.
Sealcoat is an emulsified coating product applied to asphalt to protect against surface weathering. Sealcoat products contain coal-tar (CT) or petroleum-derived residues and are a recognized source of polycyclic aromatic hydrocarbons (PAHs) in urban areas. Although the toxicity of urban runoff from CT-sealed asphalt is established, chemical characterization has focused more on PAHs and alkylated derivatives and less on polar transformation products. In this study, solid-phase extraction (SPE) was used to concentrate dissolved (<0.2 μm) species in runoff collected from asphalt surfaces sealed with CT pitch or steam-cracked petroleum (SCP) residues. CT-sealed surfaces released a 20-fold greater concentration of SPE-extractable compounds in runoff compared to SCP-sealed surfaces. Representative compounds were sorted into four groups: nitrogen heterocycles (azaarenes) and other oxygen- and sulfur-containing species (N HET); hydroxylated N heterocycles (hydroxylated N HET); the nonionic surfactant 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD); and styrene-acrylonitrile polymer byproducts (SAN Trimer). Species concentrations and weathering-related disappearance behavior differed among the four subgroups. While hydroxylated N HET concentrations decreased by 94% in runoff from CT-sealed surfaces 60 h after sealcoat application, SAN Trimer concentrations in CT and SCP runoff increased over time as polymerization progressed, illustrating the complex changes the chemicals in sealcoat undergo as it cures under environmentally-relevant conditions. Overall, this study shows that urban runoff collected from CT-sealed and SCP-sealed asphalt surfaces is a potential source of water-soluble contaminants with unknown long-term ecotoxicological effects to aquatic systems.
Show more [+] Less [-]Plasma polymer facilitated magnetic technology for removal of oils from contaminated waters
2018
Wahono, Satriyo Krido | Cavallaro, Alex | Vasilev, Krasimir | Mierczynska, Agnieszka
Oil pollution of waters is one of the most serious environmental problems globally. The long half-life and persistence within the environment makes oil particularly toxic and difficult to remediate. There is a significant need for efficient and cost-effective oil recovery technologies to be brought in to practice. In this study, we developed a facile and efficient magnetic separation method. The surface of 316L stainless steel nanoparticles was modified by plasma deposition of 1,7-octadiene and perfluorooctane, producing relatively hydrophobic coatings having water contact angles of 86 and 100°, respectively. Both coatings had high oil removal efficiency (ORE) of >99%. The captured oil could be easily separated by applying an external magnetic force. The ease of material preparation and separation from the water after the oil is captured, and its high ORE is a compelling argument for further development and optimization of the technology to possible utilization into practice. Furthermore, the capacity of plasma polymerization to deliver desired surface properties can extend the application of the technology to removing other chemical and biological contaminants from polluted waters.
Show more [+] Less [-]Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres
2011
Dai, Chao-meng | Geissen, S.-U. (Sven-Uwe) | Zhang, Ya-lei | Zhang, Yong-jun | Zhou, Xue-fei
A molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization using diclofenac (DFC) as a template. Binding characteristics of the MIP were evaluated using equilibrium binding experiments. Compared to the non-imprinted polymer (NIP), the MIP showed an outstanding affinity towards DFC in an aqueous solution with a binding site capacity (Qₘₐₓ) of 324.8mg/g and a dissociation constant (Kd) of 3.99mg/L. The feasibility of removing DFC from natural water by the MIP was demonstrated by using river water spiked with DFC. Effects of pH and humic acid on the selectivity and adsorption capacity of MIP were evaluated in detail. MIP had better selectivity and higher adsorption efficiency for DFC as compared to that of powdered activated carbon (PAC). In addition, MIP reusability was demonstrated for at least 12 repeated cycles without significant loss in performance, which is a definite advantage over single-use activated carbon.
Show more [+] Less [-]A comparative study of immobilizing ammonium molybdophosphate onto cellulose microsphere by radiation post-grafting and hybrid grafting for cesium removal
2021
Dong, Zhen | Du, Jifu | Chen, Yanliang | Zhang, Manman | Zhao, Long
Ammonium molybdophosphate (AMP) exhibits high selectivity towards Cs but it cannot be directly applied in column packing, so it is necessary to prepare AMP–based adsorbents into an available form to improve its practicality. This work provided two AMP immobilized cellulose microspheres (MCC@AMP and MCC-g-AMP) as adsorbents for Cs removal by radiation grafting technique. MCC-g-AMP was prepared by radiation graft polymerization of GMA on microcrystalline cellulose microspheres (MCC) followed by reaction with AMP suspension, and MCC@AMP was synthesized by radiation hybrid grafting of AMP and GMA onto MCC through one step. The different structures and morphologies of two adsorbents were characterized by FTIR and SEM. The adsorption properties of two adsorbents against Cs were investigated and compared in batch and column experiments under different conditions. Both adsorbents were better obeyed pseudo-second-order kinetic model and Langmuir model. MCC-g-AMP presented faster adsorption kinetic and more stable structure, whereas MCC@AMP presented more facile synthesis and higher adsorption capacity. MCC@AMP was pH independent in the range of pH 1–12 but MCC-g-AMP was sensitive to pH for Cs removal. The saturated column adsorption capacities of MCC@AMP and MCC-g-AMP were 5.4 g-Cs/L-ad and 0.75 g-Cs/L-ad in column adsorption experiments at SV 10 h⁻¹. Both adsorbents exhibited very high radiation stability and can maintain an adsorption capacity of >85% even after 1000 kGy γ-irradiation. On the basis, two AMP-loaded adsorbents possessed promising application in removal of Cs from actual contaminated groundwater. These findings provided two efficient adsorbents for treatment of Cs in radioactive waste disposal.
Show more [+] Less [-]Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells
2021
Ding, Yunfei | Zhang, Ruiqing | Li, Boqing | Du, Yunqiu | Li, Jing | Tong, Xiaohan | Wu, Yulong | Ji, Xiaofei | Zhang, Ying
With the widespread use of plastics and nanotechnology products, nanoplastics (NPs) have become a potential threat to human health. It is of great practical significance to study and evaluate the distribution of NPs in mice as mammal models and their entry, transport, and cytotoxicity in human cell lines. In this study, we detected the tissue distribution of fluorescent polystyrene nanoplastics (PS-NPs) in mice and assessed their endocytosis, transport pathways, and cytotoxic effects in GES-1 cells. We found that PS-NPs were clearly visible in gastric, intestine, and liver tissues of mice and in GES-1 cells treated with PS-NPs. Entry of PS-NPs into GES-1 cells decreased with the inhibition of caveolae-mediated endocytosis (nystatin), clathrin-mediated endocytosis (chlorpromazine HCl), micropinocytosis (ethyl-isopropyl amiloride), RhoA (CCG-1423), and F-actin polymerization (lantrunculin A). Rac1 inhibitors (NSC 23766) had no significant effect on PS-NPs entering GES-1 cells. F-actin levels significantly decreased in CCG-1423-pretreated GES-1 cells exposed to PS-NPs. GES-1 cell ultrastructural features indicated that internalized PS-NPs can be encapsulated in vesicles, autophagosomes, lysosomes, and lysosomal residues. RhoA, F-actin, RAB7, and LAMP1 levels in PS-NPs-treated GES-1 cells were remarkably up-regulated and the Rab5 level was significantly down-regulated compared to levels in untreated cells. PS-NPs treatment decreased cell proliferation rates and increased cell apoptosis. The formation of autophagosomes and autolysosomes and levels of LC3II increased with the length of PS-NPs treatment. The results indicated that cells regulated endocytosis in response to PS-NPs through the RhoA/F-actin signaling pathway and internalized PS-NPs in the cytoplasm, autophagosomes, or lysosomes produced cytotoxicity. These results illustrate the potential threat of NPs pollution to human health.
Show more [+] Less [-]