Refine search
Results 1-10 of 22
Removal of microplastics from synthetic wastewater via sono-electrocoagulation process: modeling and optimization by central composite design Full text
2024
Ghadami, Mahshid | asadi-Ghalhari, Mahdi | Izanloo, Hassan | Alasvand, Shokoufeh | Tabatabaei, fatameh sadat | Mostafaloo, Roqiyeh | Omidi Oskouei, Alireza | Ghafouri, Nasim
Wastewater treatment plants are an important pathway for microplastics (MPs) to enter the environment. In recent decades, hybrid treatment technologies such as sono-electrocoagulation have been used to treat various types of wastewater. This study aimed to remove polypropylene microplastics from synthetic wastewater by sono-electrocoagulation process using central composite design. The central composite design was utilized to investigate the relationship among four independent variables including the number of MPs (0.003-0.03 MPs/L), sodium sulfate concentration (180-9000 mol/L), voltage (1-15 V) and reaction time (20-180 min) on the efficiency of polypropylene microplastic. Design Expert 13 software and central composite design method were used to design and analyze the experiments and results. The optimum number of concentration of MPs, sodium sulfate concentration, voltage, and reaction time were found to be 6343.36 MPs/L, 0.0181924 mol/L, 10.0356 V, and 62.21 min, respectively. In optimal conditions, polypropylene removal was found to be %90.34. Central composite design proposed a quadratic model for this process. Adequacy of the model using lack of fit statistical tests values, p-values, and F-values was checked, yielding the values of were 1.76, 0.0001 ˂, 19.51, respectively. The R2, R2 adjusted, R2 predicted values which were 0.9367, 0.8776, 0.6959, respectively. Considering the proper removal efficiency, the sono-electrocoagulation process can be used to remove microplastics.
Show more [+] Less [-]Abundance and distribution of microplastics on sandy beaches of the eastern Moroccan Mediterranean coast Full text
2024
Azaaouaj, S. | Nachite, D. | Anfuso Melfi, Giorgio | Er-Ramy, N. | Ciencias de la Tierra
Microplastics (MPs) were investigated at 19 sandy beaches along the eastern Mediterranean Moroccan coast. Sediment samples (5 mm–63 μ m) were analyzed to identify MPs abundance, size, shape, color and nature. MPs concentration ranged from 40 ± 7.4 to 230 ± 48.6 MPs kg 1 ; fibrous MPs were the most abundant (74.72 %), followed by fragments (20.26 %), films (3.27 %), pellets (1.42 %) and foams (0.33 %). Large MPs (1–5 mm) accounted for 58 %, while small (< 1 mm) for 42 %. The 1–2 mm fraction of sediments presented the greatest amounts (30.67 %) of MPs. Transparent (50 %) and blue (17 %) were most common colors and most of particles were angular and irregularly shaped. Fourier Transform Infrared Spectroscopy (FTIR) analysis showed that PE (Polyethylene), PS (Polystyrene) and PP (Polypropylene) and PVC (Polyvinyl chloride) were the most common polymers. These findings revealed a moderate level of microplastic pollution along the beaches of the eastern Moroccan Mediterranean coast.
Show more [+] Less [-]Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter Full text
2018
Xu, Baile | Liu, Fei | Brookes, Philip C. | Xu, Jianming
Microplastics have a great potential to sorb organic pollutants from the adjacent environment. In this study, the sorption of tetracycline, a polar and ionizable antibiotic, on three types of microplastics (polyethylene (PE), polypropylene (PP) and polystyrene (PS)) were investigated in batch sorption experiments. The sorption isotherms were well fitted by the Langmuir model, indicating that not only hydrophobic interactions but also other interactions (e.g. electrostatic interactions) played important roles in the sorption process. PS had the maximum sorption capacity, following the order PS > PP > PE, which can be attributed to polar interactions and π-π interactions. The sorption of tetracycline on microplastics was significantly influenced by pH, with sorption capacity increasing gradually, peaking at pH 6.0 and then decreasing, likely due to the influence of tetracycline speciation with the change of pH. Fulvic acid was selected as representative dissolved organic matter (DOM) to examine the effect on sorption. The increasing concentration of fulvic acid inhibited the sorption of tetracycline on three microplastics, decreasing them by more than 90% at the fulvic acid concentration of 20 mg/L, which implied a greater affinity of tetracycline to fulvic acid than to microplastics. Increasing salinity from 0.05 to 3.5% had negligible effects on the sorption of tetracycline on the three microplastics. Our results highlight the importance of pH and DOM on the sorption of tetracycline on microplastics, and suggest the relatively minor role of microplastics in the fate and transport of tetracycline in the aquatic environment in the presence of DOM.
Show more [+] Less [-]Microplastic interactions with freshwater microalgae: Hetero-aggregation and changes in plastic density appear strongly dependent on polymer type Full text
2016
Lagarde, Fabienne | Olivier, Ophélie | Zanella, Marie | Daniel, Philippe | Hiard, Sophie | Caruso, Aurore
In this study, the interactions between microplastics, chosen among the most widely used in industry such as polypropylene (PP) and high-density polyethylene (HDPE), and a model freshwater microalgae, Chlamydomas reinhardtii, were investigated. It was shown that the presence of high concentrations of microplastics with size >400 μm did not directly impact the growth of microalgae in the first days of contact and that the expression of three genes involved in the stress response was not modified after 78 days. In parallel, a similar colonization was observed for the two polymers. However, after 20 days of contact, in the case of PP only, hetero-aggregates constituted of microalgae, microplastics and exopolysaccharides were formed. An estimation of the hetero-aggregates composition was approximately 50% of PP fragments and 50% of microalgae, which led to a final density close to 1.2. Such hetero-aggregates appear as an important pathway for the vertical transport of PP microplastics from the water surface to sediment. Moreover, after more than 70 days of contact with microplastics, the microalgae genes involved in the sugar biosynthesis pathways were strongly over-expressed compared to control conditions. The levels of over-expression were higher in the case of HDPE than in PP condition. This work presents the first evidence that depending on their chemical nature, microplastics will follow different fates in the environment.
Show more [+] Less [-]Mastication of polyolefins alters the microbial composition in Galleria mellonella Full text
2021
Peydaei, Asal | Bagheri, Hedayat | Gurevich, Leonid | de Jonge, Nadieh | Nielsen, Jeppe Lund
Recent studies have indicated that Galleria mellonella larvae ingest polyethylene films and the degradation mechanism could inspire biotechnological exploitation for degrading plastic to eliminate global pollution from plastic waste. In this study, we tested the chemical compositions of masticated and ingested different plastic types by G. mellonella. High throughput sequencing of 16S rRNA gene was used to characterize the alteration of the microbial communities derived from salivary glands, gut contents and whole G. mellonella larvae. Our results indicated that G. mellonella is able to masticate polyethylene (PE), expanded polystyrene (EPS) and polypropylene (PP) and convert it to small particles with very large and chemically modified surfaces. The characteristics of the polymer affect the rate of damage. Formation of functional carbonyl groups on the appearance of oxidized metabolic intermediates of polyolefins in the frass samples observed. We found that the mastication of EPS, PP or PE could significantly alter the microbial composition in the gut content while it did not appear to influence the salivary glands microbial community. Representatives of Desulfovibrio vulgaris and Enterobacter grew with the PE diet while mastication of polystyrene and polypropylene increased the abundance of Enterococcus. The evaluation of bacterial communities in whole larvae confirmed the obtained result and additionally showed that the abundance of Paenibacillus, Corynebacterium and Commamonadaceae increased by Styrofoam (EPS) consumption.
Show more [+] Less [-]Distribution characteristics of microplastics in Zhubi Reef from South China Sea Full text
2019
Wong, David Yau-kar | Yan, Muting | Xu, Kaihang | Nie, Huayue | Gong, Han | Wang, Jun
As a new type of emerging pollutant in the ocean, microplastics have received global attention in recent years. Considering the increasing amount of human activities around the South China Sea, it is important to determine the current status of microplastic pollution in this region. In this study, we analyzed the abundance and distribution of microplastics at Zhubi Reef in the South China Sea. Microplastic abundance ranged from 1,400 to 8,100 items/m3 of surface water, which was much higher than the values reported from other ocean areas. About 80% of the microplastics were smaller than 0.5 mm in size. Fibers and pellets comprised the most common microplastic types. The dominant microplastics were transparent or blue in color. The main polymer types were polypropylene (25%) and polyamide (18%). In general, our results revealed Zhubi Reef was contaminated with microplastics, which were likely derived from the intensive fisheries in the area and emissions from coastal cities. This study also provides baseline data that are useful for additional studies of microplastics in the South China Sea.
Show more [+] Less [-]Microbial pioneers of plastic colonisation in coastal seawaters Full text
2022
Latva, Mira | Dedman, Craig J. | Wright, Robyn J. | Polin, Marco | Christie-Oleza, Joseph A.
Plastics, when entering the environment, are immediately colonised by microorganisms. This modifies their physico-chemical properties as well as their transport and fate in natural ecosystems, but whom pioneers this colonisation in marine ecosystems? Previous studies have focused on microbial communities that develop on plastics after relatively long incubation periods (i.e., days to months), but very little data is available regarding the earliest stages of colonisation on buoyant plastics in marine waters (i.e., minutes or hours). We conducted a preliminary study where the earliest hours of microbial colonisation on buoyant plastics in marine coastal waters were investigated by field incubations and amplicon sequencing of the prokaryotic and eukaryotic communities. Our results show that members of the Bacteroidetes group pioneer microbial attachment to plastics but, over time, their presence is masked by other groups – Gammaproteobacteria at first and later by Alphaproteobacteria. Interestingly, the eukaryotic community on plastics exposed to sunlight became dominated by phototrophic organisms from the phylum Ochrophyta, diatoms at the start and brown algae towards the end of the three-day incubations. This study defines the pioneering microbial community that colonises plastics immediately when entering coastal marine environments and that may set the seeding Plastisphere of plastics in the oceans.
Show more [+] Less [-]Low concentrations and low spatial variability of marine microplastics in oysters (Crassostrea virginica) in a rural Georgia estuary Full text
2020
Keisling, Clarissa | Harris, R Daniel | Blaze, Julie | Coffin, John | Byers, James E.
Microplastics are an emerging concern for the health of marine ecosystems. In the southeastern US, the filter-feeding Eastern oyster, Crassostrea virginica, is susceptible to microplastic ingestion. We quantified the distribution of microplastics within adult oysters (harvestable size >7.5 cm) from 28 reefs throughout a rural estuary with limited riverine inputs (St. Catherines Sound, Georgia). To determine which variables best predict microplastic concentration in oysters, we also quantified oyster recruitment, distance to ocean, fetch, and water body width. Oysters averaged 0.72 microplastic particles per individual (0.18 particles per gram wet mass); microfragments and microplastics were equally abundant. Although microplastic concentrations were low, multivariate models identified a positive effect of water body width on the site-level concentration of plastic microfibers; average microfragment length was affected by fetch. Our work informs a growing understanding of microplastic distribution in coastal estuaries, providing an important rural contrast to the urbanized estuaries that have been examined.
Show more [+] Less [-]Desorption modeling of hydrophobic organic chemicals from plastic sheets using experimentally determined diffusion coefficients in plastics Full text
2018
Lee, Hwang | Byun, Da-Eun | Kim, Ju Min | Kwon, Jung-Hwan
To evaluate rate of migration from plastic debris, desorption of model hydrophobic organic chemicals (HOCs) from polyethylene (PE)/polypropylene (PP) films to water was measured using PE/PP films homogeneously loaded with the HOCs. The HOCs fractions remaining in the PE/PP films were compared with those predicted using a model characterized by the mass transfer Biot number. The experimental data agreed with the model simulation, indicating that HOCs desorption from plastic particles can generally be described by the model. For hexachlorocyclohexanes with lower plastic-water partition coefficients, desorption was dominated by diffusion in the plastic film, whereas desorption of chlorinated benzenes with higher partition coefficients was determined by diffusion in the aqueous boundary layer. Evaluation of the fraction of HOCs remaining in plastic films with respect to film thickness and desorption time showed that the partition coefficient between plastic and water is the most important parameter influencing the desorption half-life.
Show more [+] Less [-]A baseline study of meso and microplastic predominance in pristine beach sediment of the Indian tropical island ecosystem Full text
2022
Mohan, P.M. | Tiwari, Shivam | Karuvelan, Murugan | Malairajan, Sumathi | Mageswaran, T. | Sachithanandam, V.
The global presence and prevalence of microplastic have moved microplastic from an emerging pollutant to a persistent contaminant. Microplastic prevails in almost all spheres of the environment viz. terrestrial, marine and atmosphere the globe abundantly. The prevalence and toxic effects on marine organisms have been studied around the world but the studies are limited to the coastal regime of the Andaman and Nicobar Islands (ANI). This study aims to record microplastic prevalence on the tourist beaches of Port Blair, ANI. Three coastal stations namely Cove beach, Quarry beach and Wandoor beach were examined in detail in this regard. Microplastics in the form of lines, fragments, pellets, foams and fibres were found at the sampled sites. Wandoor beach recorded the highest microplastic particles ranging from 105–475 particles kg⁻¹ of sediment with the mean value of 249.82 ± 105.78 particles kg⁻¹. Quarry beach near the municipal waste dumpsite showed the lowest of 72.5–222.5 particles kg⁻¹ with a mean value of 135.625 ± 62.83 particles kg⁻¹. The polymeric forms found were High-density polyethylene (HDPE), polystyrene (PS), polypropylene (PP) and polyethylene terephthalate (PET). This study revealed microplastic input from municipal dump waste near the beach. Fourier Transform Infrared spectroscopy (FTIR) revealed the presence of a new type of polymer namely plasta zinc in the beach sediment, which possibly could be a nanoplastic. Its presence reveals the biological enzymatic degradation of microplastic occurring in the marine environment. Further investigations are required to determine the factors influencing the prevalence of microplastic, its toxic effects on marine habitat and microplastic degradation mechanisms in the marine habitat.
Show more [+] Less [-]