Refine search
Results 1-10 of 26
Antibiotic resistance genes are abundant and diverse in raw sewage used for urban agriculture in Africa and associated with urban population density
2019
Bougnom, Blaise P. | McNally, Alan | Etoa, François-X. | Piddock, Laura JV.
A comparative study was conducted to (1) assess the potential of raw sewage used for urban agriculture to disseminate bacterial resistance in two cities of different size in Cameroon (Central Africa) and (2) compare the outcome with data obtained in Burkina Faso (West Africa). In each city, raw sewage samples were sampled from open-air canals in three neighbourhoods. After DNA extraction, the microbial population structure and function, presence of pathogens, antibiotic resistance genes and Enterobacteriaceae plasmids replicons were analysed using whole genome shotgun sequencing and bioinformatics. Forty-three pathogen-specific virulenc e factor genes were detected in the sewage. Eighteen different incompatibility groups of Enterobacteriaceae plasmid replicon types (ColE, A/C, B/O/K/Z, FIA, FIB, FIC, FII, H, I, N, P, Q, R, T, U, W, X, and Y) implicated in the spread of drug-resistance genes were present in the sewage samples. One hundred thirty-six antibiotic resistance genes commonly associated with MDR plasmid carriage were identified in both cities. Enterobacteriaceae plasmid replicons and ARGs found in Burkina Faso wastewaters were also present in Cameroon waters. The abundance of Enterobacteriaceae, plasmid replicons and antibiotic resistance genes was greater in Yaounde, the city with the greater population.In conclusion, the clinically relevant environmental resistome found in raw sewage used for urban agriculture is common in West and Central Africa. The size of the city impacts on the abundance of drug-resistant genes in the raw sewage while ESBL gene abundance is related to the prevalence of Enterobacteriaceae along with plasmid Enterobacteriaceae abundance associated to faecal pollution.
Show more [+] Less [-]Genetic, epigenetic and microbiome characterisation of an earthworm species (Octolasion lacteum) along a radiation exposure gradient at Chernobyl
2019
Newbold, Lindsay K. | Robinson, Alex | Rasnaca, I. | Lahive, Elma | Soon, Gweon H. | Lapied, Emmanuel | Oughton, Deborah | Gashchak, Sergey | Beresford, Nicholas A. | Spurgeon, David J.
The effects of exposure to different levels of ionising radiation were assessed on the genetic, epigenetic and microbiome characteristics of the “hologenome” of earthworms collected at sites within the Chernobyl exclusion zone (CEZ). The earthworms Aporrectodea caliginosa (Savigny, 1826) and Octolasion lacteum (Örley, 1881) were the two species that were most frequently found at visited sites, however, only O. lacteum was present at sufficient number across different exposure levels to enable comparative hologenome analysis. The identification of morphotype O. lacteum as a probable single clade was established using a combination of mitochondrial (cytochrome oxidase I) and nuclear genome (Amplified Fragment Length Polymorphism (AFLP) using MspI loci). No clear site associated differences in population genetic structure was found between populations using the AFLP marker loci. Further, no relationship between ionising radiation exposure levels and the percentage of methylated loci or pattern of distribution of DNA methylation marks was found. Microbiome structure was clearly site dependent, with gut microbiome community structure and diversity being systematically associated with calculated site-specific earthworm dose rates. There was, however, also co-correlation between earthworm dose rates and other soil properties, notably soil pH; a property known to affect soil bacterial community structure. Such co-correlation means that it is not possible to attribute microbiome changes unequivocally to radionuclide exposure. A better understanding of the relationship between radionuclide exposure soil properties and their interactions on bacterial microbiome community response is, therefore, needed to establish whether these the observed microbiome changes are attributed directly to radiation exposure, other soil properties or to an interaction between multiple variables at sites within the CEZ.
Show more [+] Less [-]Monitoring anthropogenic sewage pollution on mangrove creeks in southern Mozambique: A test of Palaemon concinnus Dana, 1852 (Palaemonidae) as a biological indicator
2011
Penha-Lopes, Gil | Torres, Paulo | Cannicci, Stefano | Narciso, Luís Filipe Castanheira | Paula, Jose
Tropical coastal ecosystems, such as mangroves, have a great ecological and socioeconomic importance for adjacent systems and local populations, but intensive environmental impact monitoring is still lacking, mainly in East Africa. This study evaluated the potential anthropogenic disturbance on Palaemon concinnus population structure and fitness. Palaemon concinnus populations from one peri-urban (domestic sewage impacted) and two pristine mangrove creeks were studied by sampling nearly 100 shrimps per location every 15 days for 12 months. The shrimps at the peri-urban location were larger, experienced longer reproductive periods, presented higher proportion of ovigerous females and better embryo quality when compared with shrimps inhabiting pristine locations. Physiological indices (RNA/DNA ratio) were similar between shrimps at pristine and peri-urban mangroves. However, a higher level of parasitation by a Bopyridae isopod, Pseudione elongata indicated some degree of stress on the host at the peri-urban mangrove, with potential effects on the host population dynamics.
Show more [+] Less [-]Limited effects of environmentally-relevant concentrations in seawater of dibutyl phthalate, dimethyl phthalate, bisphenol A, and 4-nonylphenol on the reproductive products of coral-reef organisms
2022
Vered, Gal | Shenkar, Noa
Plastic additives (PAs) are chemical compounds incorporated into the plastic during the manufacturing process. Phthalate acid esters, bisphenols, and nonylphenols are all PAs found in marine environments and associated with endocrine-disrupting processes. However, our knowledge regarding the impact of endocrine-disrupting PAs on coral-reef organisms is limited. As reef population structure is directly linked to reproduction and larval settlement processes, interference with hormonal systems can impact coral-reef community structure, particularly if the effects of PAs differ among species. In the current study we exposed the reproductive products of four tropical coral-reef invertebrates to environmentally-relevant concentrations of four prevalent PAs in seawater: dibutyl phthalate (DBP), dimethyl phthalate, (DMP), 4-nonylphenol (4-NP), and bisphenol A (BPA), as well as to 10³ higher laboratory concentrations of these PAs. Our results revealed that apart from the significant negative effect of the 1 μg/L of 4-NP on the settlement of the soft coral Rhytisma fulvum, none of the other tested materials demonstrated a significant effect on the exposed organisms at environmentally-relevant concentrations in seawater. The 4-NP high laboratory concentration (1000 μg/L), however, had significant negative effects on all the examined species. The high laboratory BPA concentration (1000 μg/L) significantly reduced fertilization success in the solitary ascidian Herdmania momus, up to its complete failure to reproduce. Moreover, the high laboratory DMP concentration (100 μg/L) had a significant negative effect on planulae settlement of the stony coral Stylophora pistillata. Our findings demonstrate the negative and selective effects of PAs on the development and reproduction of coral-reef organisms; and, specifically, the significant effect found following exposure to 4-NP. Consequently, if we aim to fully understand the impact of these contaminants on this endangered ecosystem, we suggest that the actual concentrations within the living organism tissues should be tested in order to produce relevant risk assessments for brooding-coral species.
Show more [+] Less [-]Study of the generation and diffusion of bioaerosol under two aeration conditions
2020
Han, Yunping | Yang, Dang | Han, Chao | Li, Lin | Liu, Junxin
Given that studies on actual sewage treatment plants are often affected by environmental conditions, it is challenging to clearly understand the associated bioaerosol generation and diffusion characteristics during the aeration process. Therefore, to enhance understanding in this regard, in this study, bioaerosol generator was used to simulate bioaerosol generation and diffusion under two aeration modes, i.e., bubble bottom aeration and brush surface aeration. The total concentration range of culturable bacteria in the bioaerosol produced by bubble bottom aeration and that produced by brush surface aeration were 300–3000 CFU/m³. Under bubble bottom aeration, the generated bioaerosol was symmetrically distributed around the source point, whereas under brush surface aeration, it was primarily distributed in the forward direction of the rotating brush surface. These bioaerosols from bubble bottom aeration predominantly consisted of particles with sizes below 3.3 μm, particularly those with sizes in the range 1.1–2.1 μm. On the contrary, the bioaerosols produced via brush surface aeration predominantly consisted of particles with sizes above 3.3 μm. The distribution characteristics of population structure in the two aeration modes were consistent with the distribution characteristics of concentration in the corresponding models. Additionally, the results showed that when the aeration process is unaffected by environmental conditions (particle matters, wind direct, wind speed, etc.), the bioaerosol components originate primarily from the parent sewage or sludge, and do not diffuse far from the source point. Therefore, source reduction (capping or sealing) can be recommended as the primary control strategy for bioaerosols in sewage treatment plants. The adoption of such measures will significantly limit the diffusion of bioaerosols, thereby reducing the potential risks associated with human exposure.
Show more [+] Less [-]Otolith fingerprints reveals potential pollution exposure of newly settled juvenile Sparus aurata
2020
Vrdoljak, Dario | Matić-Skoko, Sanja | Peharda, Melita | Uvanović, Hana | Markulin, Krešimir | Mertz-Kraus, Regina
Coastal ecosystems are increasingly threatened by a wide range of human activities. Fish otolith chemistry, by creating a unique specific signature, can be used as a natural tag for determining life stage dispersal, spatial connectivity and population structure. In this study, we tested whether differences in otolith composition among juveniles of gilthead sea bream, Sparus aurata, could enable their proper allocation to polluted areas based on higher concentrations of elements related to contaminants. Otoliths were embedded, sectioned and analysed by LA-ICP-MS in line scan mode. Multivariate analysis confirmed clear separation between sites and elements. Samples from the site under the strongest anthropogenic impact from industrial and agricultural river input were characterized by higher values of Pb/Ca and Zn/Ca. However, these relatively low values likely do not have a negative effect on S. aurata recruitment, though they could serve for identifying the contribution of polluted nurseries to stock dynamics.
Show more [+] Less [-]Between-habitat variability in the population dynamics of a global marine invader may drive management uncertainty
2018
Epstein, Graham | Smale, Dan A.
Understanding population dynamics of established invasive species is important for designing effective management measures and predicting factors such as invasiveness and ecological impact. The kelp Undaria pinnatifida has spread to most temperate regions of the world, however a basic understanding of population dynamics is lacking for many regions. Here, Undaria was monitored for 2 years, at 9 sites, across 3 habitats to investigate habitat-related variation in population structure, reproductive capacity and morphology. Populations on marina pontoons were distinct from those in reef habitats, with extended recruitment periods and higher abundance, biomass, maturation rates and fecundity; potentially driven by lower inter-specific and higher intra-specific competition within marinas. This suggests that artificial habitats are likely to facilitate the spread, proliferation and reproductive fitness of Undaria across its non-native range. More broadly, generalising population dynamics of invasive species across habitat types is problematic, thus adding high complexity to management options.
Show more [+] Less [-]Introduction of the alien Xenostrobus securis (Bivalvia: Mytilidae) into Hong Kong, China: Interactions with and impacts upon native species and the earlier introduced Mytilopsis sallei (Bivalvia: Dreissenidae)
2015
Morton, Brian | Leung, K.F.
This constitutes the first record of the Australian alien mytilid Xenostrobus securis in China. The introduction occurred prior to 2010 probably via shipping arriving at Yantian in Mirs Bay, China, close to Hong Kong. Point sources of infection could be Australia or Korea or Japan where it has similarly been introduced. Analysis of X. securis in Hong Kong shows that it tolerates a wide range of salinities from 5.4‰ to 28.7‰. Water temperatures in Hong Kong match those in its native range.In Hong Kong, X. securis co-occurs with the similarly introduced Mytilopsis sallei and a native bivalve community. The population structure of X. securis suggests a lifespan of >2years with new generations produced by conspecifics. Such a life history strategy is also exhibited by M. sallei. Now established in China, northern Asia, the Mediterranean and, most recently, the Iberian Atlantic, the invasion of other locations by X. securis seems probable.
Show more [+] Less [-]Interspecific introgression and changes in population structure in a flatfish species complex after the Prestige accident
2013
Crego-Prieto, V. | Danancher, D. | Campo, D. | Pérez, J. | Garcia-Vazquez, E. | Roca, A.
Oil spills cause aggressive impacts on marine ecosystems affecting immense areas and the species inhabiting them. If wastes are not cleaned up properly, the remnants may affect local populations for a long time. This work focuses on the long-term impacts of the Prestige spillage that occurred off Galician coast (Spain) in November 2002. Model species were two sympatric flatfish, the megrims Lepidorhombus whiffiagonis and Lepidorhombus boscii. Samples obtained before and nine years after the Prestige accident from affected and unaffected areas were genotyped for six hypervariable nuclear markers and for the mitochondrial D-loop sequence. The results revealed a high proportion of post-F1 interspecific hybrids in the area affected, and also increased intraspecific population differentiation likely due to such localized introgression of foreign genes. These changes suggest the appearance of a hybrid zone following the accident and emphasize the need of paying special attention to potential evolutionary impacts of oil spills.
Show more [+] Less [-]Does industrial collaborative agglomeration improve environmental efficiency? Insights from China’s population structure
2022
Zhu, Yue | Du, Wenbo | Zhang, Juntao
Nowadays, the development of green economy and the improvement of environmental efficiency have been a hotspot in both academia and industry. Especially, the effect of the collaborative agglomeration of manufacturing and productive services industries on environmental efficiency has drawn attention from Chinese policymakers, during a critical period of industrial transformation and upgrading and ecological civilization construction in China. However, few studies have explored whether and how industrial collaborative agglomeration affects environmental efficiency based on population structure perspective. To bridge this gap, using the methods of the stochastic frontier approach (SFA), the moderating effect of population structure, and the spatial effect, and employing the panel data of 66 cities in eastern China during 2009-2018, this paper studies the effect of industrial collaborative agglomeration on environmental efficiency and measure the fluctuates of influence including population structure. The results show that industrial collaborative agglomeration has the effect of improving environmental efficiency, and both of them have strong spatial spillover effect. Direct effect of the industrial collaborative agglomeration is more significant positive than indirect effect. It indicates that the environmental efficiency is affected by the industrial collaborative agglomeration in both the local region and neighboring regions. In addition, population density, aging and quality play a positive moderate role by strengthening the spillover effect of industrial collaborative agglomeration, while the moderating effect of population urbanization is not significant. Then, the recommendations and policy implications to improve environmental efficiency are put forward based on the research results: optimizing the coordinated governance system of regional ecological environment, accelerating the innovation of industrial value chain, and promoting the sustainable development of industry and ecology with the advantage of population structure.
Show more [+] Less [-]