Refine search
Results 1-10 of 349
SOIL PHYSICO-CHEMICAL CHANGES FOLLOWING APPLICATION OF MUNICIPAL SOLID WASTE LEACHATES TO GRASSLANDS
2006
Gros, Raphaël | Poulenard, Jérôme | Jocteur-Monrozier, Lucile | Faivre, Pierre | Institut Méditerranéen d'Ecologie et de Paléoécologie (IMEP) ; Université Paul Cézanne - Aix-Marseille 3-Université de Provence - Aix-Marseille 1-Avignon Université (AU)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire des Sciences du Sol ; Centre Interdisciplinaire Scientifique de la Montagne (CISM) ; Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]) | Laboratoire d'Ecologie Microbienne - UMR 5557 (LEM) ; Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Ecole Nationale Vétérinaire de Lyon (ENVL)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)
Concerns about the use of residues from municipal solid waste incinerators (MSWI) in construction materials usually focus on the potential for heavy metals and organic chemicals to leach into drainage waters under the influence of rain.We hypothesised that high level of salts in the MSWI leachates may cause more of a problem, particularly on soil physico-chemical properties. Both bottom ash (BA) and Solidified Air Pollution Control residue (SAPCr) leachates were added to experimental grassland plots. The amounts of Na+ increased by up to 13% in soils supplemented with each leachate. A decrease of the soil total porosity (−14%) was evidence of a subsequent adverse physical effect of this strong salinity. The potential for the grass cover type (species composition or density) to limit this adverse effect was discussed. Laboratory tests allowed us to determine that undiluted SAPCr induced slaking of aggregates accompanied by a strong decrease of aggregate stability, to 49% of control values. Undiluted BA induced dispersion of clays and others fine particles, which are then dislodged and transported into pores, causing blockage and decreasing total porosity. Clay dispersion followed by aggregate collapse occurred when soil solution contaminated by SAPCr was diluted by rainwater. This work stressed the importance of accounting for mineral contaminants, such as salts, when conducting an assessment of waste reuse scenarios.
Show more [+] Less [-]Carbon nanomaterials for the detection of pesticide residues in food: A review
2022
Mishra, Smriti | Mishra, Shivangi | Patel, Shiv Singh | Singh, Sheelendra Pratap | Kumar, Pradip | Khan, Mohd Akram | Awasthi, Himani | Singh, Shiv
In agricultural fields, pesticides are widely used, but their residual presence in the environment poses a threat to humans, animals, insects, and ecosystems. The overuse of pesticides for pest control, enhancement of crop yield, etc. leaves behind a significant residual amount in the environment. Various robust, reliable, and reusable methods using a wide class of composites have been developed for the monitoring and controlling of pesticides. Researchers have discovered that carbon nanomaterials have a wide range of characteristics such as high porosity, conductivity and easy electron transfer that can be successfully used to detect pesticide residues from food. This review emphasizes the role of carbon nanomaterials in the field of pesticide residue analysis in different food matrices. The carbon nanomaterials including carbon nanotubes, carbon dots, carbon nanofibers, graphene/graphene oxides, and activated carbon fibres are discussed in the review. In addition, the review examines future prospects in this research area to help improve detection techniques for pesticides analysis.
Show more [+] Less [-]Adsorptive removal of propranolol under fixed-bed column using magnetic tyre char: Effects of wastewater effluent organic matter and ball milling
2022
Feizi, Farzaneh | Sarmah, Ajit K. | Rangsivek, Ropru | Gobindlal, Kapish
We investigated the competitive effects of different fractions of wastewater treatment plant effluent organic matter (EfOM) on adsorption of an organic micro pollutant (OMP), propranolol (PRO), in a fixed bed column packed with magnetic tyre char (MTC). The results showed that the presence of EfOM inhibited PRO adsorption in wastewater leading to decreased PRO adsorption capacity from 5.86 to 2.03 mg/g due to competitive effects and pore blockage by smaller EfOM fractions. Characterization of EfOM using size exclusion chromatography (LC-OCD) showed that the principal factor controlling EfOM adsorption was pore size distribution. Low molecular weight neutrals had the highest adsorption onto MTC while humic substances were the least interfering fraction. Effect of important parameters such as contact time, linear velocity and bed height/diameter ratio on MTC performance was studied in large-lab scale columns. Linear velocity and contact time were found to be effective in increasing adsorption capacity of PRO on MTC and delaying breakthrough time. Increase in linear velocity from 0.64 cm/min to 1.29 cm/min increased mass transfer and dispersion, resulting in considerable rise of adsorbed amount (5.86 mg/g to 22.58 mg/g) and increase in breakthrough time (15.8–62.7 h). Efficiency of non-equilibrium Hydrus model considering dispersion and mass transfer mechanism was demonstrated for real wastewater and scale up purposes. Ball milling for degradation of adsorbed PRO and regeneration of MTC resulted in 79% degradation of PRO was achieved after 5 h milling (550 rpm), while the addition of quartz sand increased the efficiency to 92%.
Show more [+] Less [-]Graphene-based porous nanohybrid architectures for adsorptive and photocatalytic abatement of volatile organic compounds
2022
Vēlāyutan̲, T. A. | Rizwan, Komal | Rahdar, Abbas | Badran, Mohamed Fathy | Iqbal, Hafiz M.N.
Volatile organic compounds (VOCs) represent a considerable threat to humans and ecosystems. Strategic remediation techniques for the abatement of VOCs are immensely important and immediately needed. Given a unique set of optical, mechanical, electrical, and thermal characteristics, inimitable surface functionalities, porous structure, and substantial specific surface area, graphene and derived nanohybrid composites have emerged as exciting candidates for abating environmental pollutants through photocatalytic degradation and adsorptive removal. Graphene oxide (GO) and reduced graphene oxide (rGO) containing oxygenated function entities, i.e., carbonyl, hydroxyl, and carboxylic groups, provide anchor and dispersibility of their surface photocatalytic nanoscale particles and adsorptive sites for VOCs. Therefore, it is meaningful to recapitulate current state-of-the-art research advancements in graphene-derived nanostructures as prospective platforms for VOCs degradation. Considering this necessity, this work provides a comprehensive and valuable insight into research progress on applying graphene-based nanohybrid composites for adsorptive and photocatalytic abatement of VOCs in the aqueous media. First, we present a portrayal of graphene-based nanohybrid based on their structural attributes (i.e., pore size, specific surface area, and other surface features to adsorb VOCs) and structure-assisted performance for VOCs abatement by graphene-based nanocomposites. The adsorptive and photocatalytic potentialities of graphene-based nanohybrids for VOCs are discussed with suitable examples. In addition to regeneration, reusability, and environmental toxicity aspects, the challenges and possible future directions of graphene-based nanostructures are also outlined towards the end of the review to promote large-scale applications of this fascinating technology.
Show more [+] Less [-]Impact of simulating real microplastics on toluene removal from contaminated soil using thermally enhanced air injection
2022
This paper investigated the impacts of various real microplastics (MPs), i.e., polyethylene (PE) and polyethylene terephthalate (PET) with different sizes (1000–2000 and 100–200 μm) and different dosages (0.5 and 5% on a dry weight basis), on the toluene removal during the thermally enhanced air injection treatment. First, microscopic tests were carried out to determine the MPs' microstructure and behavior. The PE was mainly a small block, and PET appeared filamentous and sheeted with a larger slenderness ratio. Second, the interactions between MPs and toluene-contaminated soils were revealed by batch adsorption equilibrium experiments and low-field magnetic resonance. The morphological differences and dosage of the MPs impacted soils’ total porosity (variation range: 39.2–42.7%) and proportion of the main pores (2–200 μm). Third, the toluene removal during the air injection consisted of compaction, rapid growth, rapid reduction, and tailing stages, and the MPs were regarded as an emerging solid state to affect these removal stages. The final cumulative toluene concentrations of soil-PET mixtures were influenced by total porosity, and those of soil-PE mixtures were controlled by total porosity (influence weight: 0.67) and adsorption capacity (influence weight: 0.33); meanwhile, a self-built comprehensive coefficient of MPs can reflect the relationship between them and cumulative concentrations (correlation coefficient: 0.783).
Show more [+] Less [-]Microplastics in plant-soil ecosystems: A meta-analysis
2022
Zhang, Yanyan | Cai, Chen | Gu, Yunfu | Shi, Yuanshuai | Gao, Xuesong
Microplastic pollution is a recognized hazard in aquatic systems, but in the past decade has emerged as a pollutant of interest in terrestrial ecosystems. This paper is the first formal meta-analysis to examine the phytotoxic effects of microplastics and their impact on soil functions in the plant-soil system. Our specific aims were to: 1) determine how the type and size of microplastics affect plant and soil health, 2) identify which agricultural plants are more sensitive to microplastics, and 3) investigate how the frequency and amount of microplastic pollution affect soil functions. Plant morphology, antioxidant production and photosynthesis capacity were impacted by the composition of polymers in microplastics, and the responses could be negative, positive or neutral depending on the polymer type. Phytotoxicity testing revealed that maize (Zea mays) was more sensitive than rice (Oryza sativa) and wheat (Triticum aestivum) within the Poaceae family, while wheat and lettuce (Lactuca sativa) were less sensitive to microplastics exposure. Microplastics-impacted soils tend to be more porous and retain more water, but this did not improve soil stability or increase soil microbial diversity, suggesting that microplastics occupied physical space but were not integrated into the soil biophysical matrix. The meta-data revealed that microplastics enhanced soil evapotranspiration, organic carbon, soil porosity, CO₂ flux, water saturation, nitrogen content and soil microbial biomass, but decreased soil N₂O flux, water stable aggregates, water use efficiency, soil bulk density and soil microbial diversity.
Show more [+] Less [-]Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II)
2021
Zhao, Chenhao | Hu, Linlin | Zhang, Changai | Wang, Shengsen | Wang, Xiaozhi | Huo, Zhongyang
Herein, a pH-independent interpenetrating polymeric networks (Fe-SA-C) were fabricated from graphitic biochar (BC) and iron-alginate hydrogel (Fe-SA) for removal of Cr(VI) and Pb(II) in aqueous solution. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM) results demonstrated that graphitic BC interpenetration increased surface porosity and distorted surfaces of Fe-SA, which boosted availability of hydroxyl (-OH) group. Fe³⁺ as a cross-linking agent of the alginate endowed Fe-SA-C with positive surfaces (positive zeta potential) and excellent pH buffering capacity, while excessive Fe³⁺ was soldered on Fe-SA-C matrix as FeO(OH) and Fe₂O₃. Cr(VI) removal at pH of 3 by Fe-SA-C (20.3 mg g⁻¹) were 30.3% and 410.6% greater than that by Fe-SA and BC, respectively. Fe-SA-C exhibited minor pH dependence over pH range of 2–7 towards Cr(VI) retention. Greater zeta potential of Fe-SA-C over Fe-SA conferred a better electrostatic attraction with Cr(VI). FTIR and XPS of spent sorbents confirmed the reduction accounted for 98.5% for Cr(VI) removal mainly due to participation of –OH. Cr(VI) reduction was further favored by conductive carbon matrix in Fe-SA-C, as evidenced by more negative Tafel corrosion potential. Reductively formed Cr(III) was subsequently complexed with carboxylic groups originating from oxidation of –OH. Thus, Cr(VI) removal invoked electrostatic attraction, reduction, and surface complexation mechanisms. Pb(II) removal with excellent pH independence was mainly ascribed to surface complexation and possible precipitation. Thus, the functionalized, conductive, and positively-charged Fe-SA-C extended its applicability for Cr(VI) and Pb(II) removal from aqueous solutions in a wide pH range. This research could expand the application of hydrogel materials for removal of both cationic and anionic heavy metals in solutions over an extended pH range.
Show more [+] Less [-]Application of solid waste of ductile cast iron industry for treatment of wastewater contaminated by reactive blue dye via appropriate nano-porous magnesium oxide
2020
Pourrahim, Solmaz | Salem, Amin | Salem, Shiva | Tavangar, Reza
The solid waste of ductile iron industry, which contains at least 88.0% magnesium oxide, is one of the toxic materials, leading to land contamination. On the other hand, the removal of reactive dyes from wastewaters is difficult required effective adsorbent like nano-porous MgO. The novelty of present investigation is based on nano-porous magnesium oxide production by precipitation from the solid waste to treat the wastewaters contaminated by reactive dye which is abundantly used in the textile industry. In order to improve the adsorptive properties of extracted MgO powder, the combinations of surfactants, containing cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and polyoxyethylene octyl phenyl ether (TX100) were applied based on the mixture design algorithm in the precipitation. The effects of processing factors such as surfactant composition, powder calcination temperature, surfactant dose and pH were evaluated on the removal efficiency. The results revolved that the combination of SDS and TX100, 1:1, plays an effective role in the production of particles with the appropriate average pore size, 16 nm. The adsorbent prepared in the optimum condition indicated a significant affinity for the removal of reactive dye which shows relatively pH-independent efficiency in the range of 3–9. The applied producer for fabrication of adsorbent eventually overcomes the pH-dependent problem for the toxic dye uptake, leading to produce the adsorbent with maximal adsorption capacity of 1000 mg g−1.
Show more [+] Less [-]Selecting the best stabilization/solidification method for the treatment of oil-contaminated soils using simple and applied best-worst multi-criteria decision-making method
2020
Kujlu, Rahele | Moslemzadeh, Mehrdad | Rahimi, Somayeh | Aghayani, Ehsan | Ghanbari, Farshid | Mahdavianpour, Mostafa
Oil-contaminated soils resulted from drilling activities can cause significant damages to the environment, especially for living organisms. Treatment and management of these soils are the necessity for environmental protection. The present study investigates the field study of seven oil-contaminated soils treated by different stabilization/solidification (S/S) methods, and the selection of the best treated site and treatment method. In this study, first, the ratios of consumed binders to the contaminated soils (w/w) and the treatment times for each unit of treated soils were evaluated. The ratios of consumed binders to the contaminated soils were between 6 and 10% and the treatment times for each unit of treated soils were between 4.1 and 18.5 min/m³. Physicochemical characteristics of treated soils were also determined. Although S/S methods didn’t change the water content of treated soils, they increased the porosity of soils. Unexpectedly, the cement-based S/S methods didn’t increase the pH of the treated soils. The highest and the lowest leaching of petroleum hydrocarbons was belonging to S/S using diatomaceous earth (DE) and the combination of Portland cement, sodium silicate and DE (CS-DE), respectively. The best acid neutralization capacity was obtained for soils treated using the combination of Portland cement and sodium silicate (CS). Based on the best-worst multi-criteria decision-making method (BWM-MCDM), the soils treated using CS-DE was select as the best. The BWM-MCDM can be used as an effective tool for the selection of the best alternative in all areas of environmental decontamination.
Show more [+] Less [-]Facile construction of highly reactive and stable defective iron-based metal organic frameworks for efficient degradation of Tetrabromobisphenol A via persulfate activation
2020
Huang, Mei | Wang, Yan | Wan, Jinquan | Ma, Yongwen | Chi, Haiyuan | Xu, Yanyan | Qiu, Shuying
Achieving large pore size, high catalytic performance with stable structure is critical for metal–organic frameworks (MOFs) to have more hopeful prospects in catalytic applications. Herein, we had reported a method to synthesize highly reactive yet stable defective iron-based Metal organic frameworks by using different monocarboxylic acids with varying lengths as a modulator. The physical−chemical characterization illustrating that modulators could improve the crystallinity, enlarge pore size and enhance catalytic performance and octanoic acid (OA) was screened to be the suitable choice. The catalytic performance of catalysts was detected through persulfate (PS) activation for degrading Tetrabromobisphenol A (TBBPA). The study demonstrated that the highest degradation efficiency for 0.018 mmol L−1 TBBPA was that 97.79% in the conditions of the 1.0 g L−1 Fe(BDC)(DMF,F)-OA-30 dosage and TBBPA:PS = 200:1. In addition, there was observed that no obvious change of the crystal structure, little the leachable iron concentration in the solutions and no significant loss of catalytic activities of Fe(BDC)(DMF,F)-OA-30 after 5th cycles. The iron valence state of Fe(BDC)(DMF,F)-OA-30 before and after degradation and electrochemical properties reveal that the partial substitution of organic ligands by octanoic acid, when removing OA and forming defects by heat and vacuum treatment to generate coordinatively unsaturated metal sites and accelerate the original transmission of electronic, leading to enhance the activity of persulfate activation for efficient removal TBBPA.
Show more [+] Less [-]