Refine search
Results 1-10 of 61
The seagrass Posidonia oceanica: ecosystem services identification and economic evaluation of goods and benefits
2015
Campagne, Carole Sylvie | Salles, Jean-Michel | Boissery, Pierre | Deter, Julie | Andromède Océanologie | Laboratoire Montpelliérain d'Économie Théorique et Appliquée (LAMETA) ; Université Montpellier 1 (UM1)-Université Paul-Valéry - Montpellier 3 (UPVM)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro) | Centre National de la Recherche Scientifique (CNRS) | Agence de l'eau Rhône Méditérranée Corse | Institut des Sciences de l'Evolution de Montpellier (UMR ISEM) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École Pratique des Hautes Études (EPHE) ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université de Montpellier (UM)-Institut de recherche pour le développement [IRD] : UR226-Centre National de la Recherche Scientifique (CNRS)
Posidonia oceanica is a marine angiosperm endemic from the Mediterranean. Despite their protection, its meadows are regressing. The economic valuation of ecosystem services (ES) assesses the contribution of ecosystems to human well-being and may provide local policy makers help in territorial development. To estimate the economic value of P. oceanica seagrass and the meadows that it forms to better account its presence in coastal development, identification and assessment of ES provided are first performed. Then goods and benefits (GB) and their economical values are estimated. In total, 25ES are identified and 7 GB are economically evaluated. The economic value of GB provided by P. oceanica ranges between 25.3 mil- lion and 45.9 million €/year which means 283–513 €/ha/year. Because of the lack of existing available data, only 7 GB linked to 11/25ES have been estimated. Despite this overall undervaluation, this study offers a value for coastal development policies to take into account.
Show more [+] Less [-]Nanoscale zero-valent iron functionalized Posidonia oceanica marine biomass for heavy metal removal from water
2017
Boubakri, Saber | Djebbi, Mohamed Amine | Bouaziz, Zaineb | Namour, Philippe | Ben Haj Amara, Abdesslem | Ghorbel-Abid, Ibtissem | Kalfat, Rafik | LABORATOIRE MATERIAUX TRAITEMENT ET ANALYSE INSTITUT NATIONAL DE RECHERCHE ET D'ANALYSE PHYSICOCHIMIQUE BIOTECHPOLE SIDI THABET ARIANA TUN ; Partenaires IRSTEA ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Faculté des Sciences de Bizerte [Université de Carthage] ; Université de Carthage (Tunisie) (UCAR) | Institut des Sciences Analytiques (ISA) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS) | RiverLy (UR Riverly) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA | International audience | Because of the excellent reducing capacity of nanoscale zero-valent iron (NZVI), it can be used as alternative materials for the removal of a variety of reducible water contaminants including toxic metals. The current paper reports the research results obtained for self-prepared biosorbent, Posidonia oceanica biomass, activated in alkaline medium and functionalized with NZVI particles. The structural characteristics, surface morphology, and binding properties of the resulting nanobiosorbent are presented. Batch comparative adsorption trials including adsorption kinetics and isothermals onto raw Posidonia, Posidonia-OH and Posidonia-OH-NZVI were investigated on three heavy metal ions: Cd(II), Pb(II), and Cu(II). The nanobiosorbent showed better properties, such as high reactivity and high uptake rate through the sorption process. The toxic metal removal has been monitored in terms of pseudo-first- and pseudo-second-order kinetics, and both Langmuir- and Freundlich-type isotherm models have been used to describe the sorption mechanism. The experimental data of all studied systems showed that the uptake kinetics follow the pseudo-second-order kinetic model and the equilibrium uptake can adopt the Langmuir-type isotherm model which assumes a monolayer coverage as the adsorption saturates and no further adsorption occurs. The thermodynamic results confirm that all sorption processes were feasible, spontaneous and thermodynamically favorable. Zeta potential data displayed that Cd(II), Pb(II), and Cu(II) tend to be reduced after exposure on the Posidonia-OH-NZVI surface. Furthermore, sorption competitions of the metals from binary and ternary systems were carried out onto Posidonia-OH-NZVI in order to gain further insight into the sorption efficiency of this material. Therefore, as a result, the proposed new nanobiosorbent could offer potential benefits in remediation of heavy metal-contaminated water as a green and environmentally friendly bionanocomposite.
Show more [+] Less [-]Local environment modulates whole-transcriptome expression in the seagrass Posidonia oceanica under warming and nutrients excess
2022
Pazzaglia, Jessica | Santillán-Sarmiento, Alex | Ruocco, Miriam | Dattolo, Emanuela | Ambrosino, Luca | Marín-Guirao, Lazaro | Procaccini, Gabriele
The intensification of anomalous events of seawater warming and the co-occurrence with local anthropogenic stressors are threatening coastal marine habitats, including seagrasses, which form extensive underwater meadows. Eutrophication highly affects coastal environments, potentially summing up to the widespread effects of global climate changes. In the present study, we investigated for the first time in seagrasses, the transcriptional response of different plant organs (i.e., leaf and shoot apical meristem, SAM) of the Mediterranean seagrass Posidonia oceanica growing in environments with a different history of nutrient enrichment. To this end, a mesocosm experiment exposing plants to single (nutrient enrichment or temperature increase) and multiple stressors (nutrient enrichment plus temperature increase), was performed. Results revealed a differential transcriptome regulation of plants under single and multiple stressors, showing an organ-specific sensitivity depending on plants' origin. While leaf tissues were more responsive to nutrient stress, SAM revealed a higher sensitivity to temperature treatments, especially in plants already impacted in their native environment. The exposure to stress conditions induced the modulation of different biological processes. Plants living in an oligotrophic environment were more responsive to nutrients compared to plants from a eutrophic environment. Evidences that epigenetic mechanisms were involved in the regulation of transcriptional reprogramming were also observed in both plants’ organs. These results represent a further step in the comprehension of seagrass response to abiotic stressors pointing out the importance of local pressures in a global warming scenario.
Show more [+] Less [-]A temporal record of microplastic pollution in Mediterranean seagrass soils
2021
Dahl, Martin | Bergman, Sanne | Björk, Mats | Diaz-Almela, Elena | Granberg, Maria | Gullström, Martin | Leiva-Dueñas, Carmen | Magnusson, Kerstin | Marco-Méndez, Candela | Piñeiro-Juncal, Nerea | Mateo Pérez, Miguel Ángel
Plastic pollution is emerging as a potential threat to the marine environment. In the current study, we selected seagrass meadows, known to efficiently trap organic and inorganic particles, to investigate the concentrations and dynamics of microplastics in their soil. We assessed microplastic contamination and accumulation in ²¹⁰Pb dated soil cores collected in Posidonia oceanica meadows at three locations along the Spanish Mediterranean coast, with two sites located in the Almería region (Agua Amarga and Roquetas) and one at Cabrera Island (Santa Maria). Almería is known for its intense agricultural industry with 30 000 ha of plastic-covered greenhouses, while the Cabrera Island is situated far from urban areas. Microplastics were extracted using enzymatic digestion and density separation. The particles were characterized by visual identification and with Fourier-transformed infrared (FTIR) spectroscopy, and related to soil age-depth chronologies. Our findings showed that the microplastic contamination and accumulation was negligible until the mid-1970s, after which plastic particles increased dramatically, with the highest concentrations of microplastic particles (MPP) found in the recent (since 2012) surface soil of Agua Amarga (3819 MPP kg⁻¹), followed by the top-most layers of the soil of the meadows in Roquetas (2173 kg⁻¹) and Santa Maria (68–362 kg⁻¹). The highest accumulation rate was seen in the Roquetas site (8832 MPP m⁻² yr⁻¹). The increase in microplastics in the seagrass soil was associated to land-use change following the intensification of the agricultural industry in the area, with a clear relationship between the development of the greenhouse industry in Almería and the concentration of microplastics in the historical soil record. This study shows a direct linkage between intense anthropogenic activity, an extensive use of plastics and high plastic contamination in coastal marine ecosystems such as seagrass meadows. We highlight the need of proper waste management to protect the coastal environment from continuous pollution.
Show more [+] Less [-]Organic pollutants in marine samples from Tunisian coast: Occurrence and associated human health risks
2021
Jebara, Amel | Lo Turco, Vincenzo | Potortì, Angela Giorgia | Bartolomeo, Giovanni | Ben Mansour, Hedi | Di Bella, Giuseppa
140 contaminants belonging to various classes (organochlorine and organophosphorus pesticides, pyrethroid insecticides, carbamates, fungicides, acaricides, herbicides, synergists, insect growth regulators, polychlorobiphenyls, polycyclic aromatic hydrocarbons) were simultaneously analysed by GC-MS/MS in marine sediments, aquatic plant leaves and fish tissues samples. A total of 260 samples from five stations along the coast of Tunisia were evaluated. The results highlight that only 28 residues (12 polychlorobiphenyls, 8 organochlorine pesticides, 7 polycyclic aromatic hydrocarbons and triphenyl phosphate) were detected at levels higher than relative LOQ values. The amounts in sediment samples were compared with Sediment Quality Guidelines (SQGs) showing that the values are acceptable and no toxic effect is expected on aquatic organisms. A little variation of contaminant residues in sediment samples among coastal stations was recorded. Namely, with respect to almost all polychlorobiphenyls and organochlorine pesticides, higher values were recorder in summer. With respect to almost all polycyclic aromatic hydrocarbons, higher values were recorder in autumn. Aquatic plant leaves showed a residue accumulation higher than that of other compartments of marine system. The data about fish samples (Sparus aurata and Sarpa salpa, the two most frequently caught fish species at five sites on the central coast of Tunisia) do not pose direct hazard to human health because values were lower than protection limits.
Show more [+] Less [-]Early signals of Posidonia oceanica meadows recovery in a context of wastewater treatment improvements
2024
Bockel, Thomas | Marre, Guilhem | Delaruelle, Gwenaëlle | Agel, Noémie | Boissery, Pierre | Guilhaumon, François | Mouquet, Nicolas | Mouillot, David | Guilbert, Antonin | Deter, Julie
Natural ecological restoration is a cornerstone of modern conservation science and managers need more documented “success stories” to lead the way. In French mediterranean sea, we monitored Posidonia oceanica lower limit using acoustic telemetry and photogrammetry and investigated the descriptors driving its variations, at a national scale and over more than a decade. We showed significant effects of environmental descriptors (region, sea surface temperature and bottom temperature) but also of wastewater treatment plant (WWTP) effluents proxies (size of WWTP, time since conformity, and distance to the closest effluent) on the meadows lower limit progression. This work indicates a possible positive response of P. oceanica meadows to improvements in wastewater treatment and a negative effect of high temperatures. While more data is needed, the example of French wastewater policy should inspire stakeholders and coastal managers in their efforts to limit anthropogenic pressures on vulnerable ecosystems.
Show more [+] Less [-]Pervasive plastisphere: First record of plastics in egagropiles (Posidonia spheroids)
2017
Pietrelli, Loris | Di Gennaro, Alessia | Menegoni, Patrizia | Lecce, Francesca | Poeta, Gianluca | Acosta, Alicia T.R. | Battisti, Corrado | Iannilli, Valentina
The ability of Posidonia oceanica spheroids (egagropiles, EG) to incorporate plastics was investigated along the central Italy coast. Plastics were found in the 52.84% of the egagropiles collected (n = 685). The more represented size of plastics has range within 1–1.5 cm, comparable to the size of natural fibres. Comparing plastics occurring both in EG and in surrounding sand, Polyethylene, Polyester and Nylon were the most abundant polymers in EG, while PSE, PE, PP and PET were the most represented in sand. In particular PE and PP were significantly more represented in sand, while PE, Nylon, Polyester and microfibers (as pills) were more represented in EG. Within plastics found in EG, 26.9% were microfibers as small pills (<1 cm), mainly composed of polyamide, polyester, cotton and PET mixing. These microfibers might be produced by discharges from washing machines and currently represents an emerging pollutant with widespread distribution in marine and freshwater ecosystems.
Show more [+] Less [-]Future heat waves due to climate change threaten the survival of Posidonia oceanica seedlings
2017
Guerrero-Meseguer, Laura | Marín, Arnaldo | Sanz-Lázaro, Carlos
Extreme weather events are major drivers of ecological change, and their occurrence is likely to increase due to climate change. The transient increases in atmospheric temperatures are leading to a greater occurrence of heat waves, extreme events that can produce a substantial warming of water, especially in enclosed basins such as the Mediterranean Sea. Here, we tested the effects of current and predicted heat waves on the early stages of development of the seagrass Posidonia oceanica. Temperatures above 27 °C limited the growth of the plant by inhibiting its photosynthetic system. It suffered a reduction in leaf growth and faster leaf senescence, and in some cases mortality. This study demonstrates that the greater frequency of heat waves, along with anticipated temperature rises in coming decades, are expected to negatively affect the germination of P. oceanica seedlings.
Show more [+] Less [-]Operationalizing blue carbon principles in France: Methodological developments for Posidonia oceanica seagrass meadows and institutionalization
2024
Comte, Adrien | Barreyre, Jeanne | Monnier, Briac | De Rafael, Roman | Boudouresque, Charles-françois | Pergent, Gérard | Ruitton, Sandrine
Conservation of ecosystems is an important tool for climate change mitigation. Seagrasses, mangroves, saltmarshes and other marine ecosystems have particularly high capacities to sequester and store organic carbon (blue carbon), and are being impacted by human activities. Calls have been made to mainstream blue carbon into policies, including carbon markets. Building on the scientific literature and the French voluntary carbon standard, the ‘Label Bas-Carbone’, we develop the first method for the conservation of Posidonia oceanica seagrasses using carbon finance. This methodology assesses the emission reduction potential of projects that reduce physical impacts from boating and anchoring. We show how this methodology was institutionalized thanks to a tiered approach on key parameters including carbon stocks, degradation rates, and decomposition rates. We discuss future needs regarding (i) how to strengthen the robustness of the method, and (ii) the expansion of the method to restoration of seagrasses and to other blue carbon ecosystems.
Show more [+] Less [-]Anchoring pressure and the effectiveness of new management measures quantified using AIS data and a mobile application
2023
Bockel, Thomas | Marre, Guilhem | Delaruelle, Gwenaëlle | Holon, Florian | Boissery, Pierre | Blandin, Agathe | Mouquet, Nicolas | Deter, Julie
Large boats can have a major impact on sensitive marine habitats like seagrass meadows when anchoring. The anchoring preference of large boats and their impacts can be mapped using Automatic Identification System (AIS). We found a constant increase in the number of anchoring events with, until recently, a large part of them within the protected Posidonia oceanica seagrass meadows. French authorities adopted a new regulation in 2019 forbidding any anchoring within P. oceanica seagrass meadows for boats larger than 24 m. The number of large ships (>24 m) anchoring in P. oceanica meadows significantly decreased after the enforcement of the regulation. The surface of avoided impact thanks to the new regulation corresponds to 134 to 217 tons of carbon sequestered by the preserved meadow in 2022. This work illustrates that a strict regulation of anchoring, based on accurate habitat maps, is effective in protecting seagrass meadows.
Show more [+] Less [-]