Refine search
Results 1-10 of 122
Source tracing with cadmium isotope and risk assessment of heavy metals in sediment of an urban river, China
2022
Fang, Ding | Wang, Hui | Liang, Yangyang | Cui, Kai | Yang, Kun | Lu, Wenxuan | Li, Jing | Zhao, Xiuxia | Gao, Na | Yu, Qizhi | Li, Hui | Jiang, He
The Nanfei River was one of dominant inflowing rivers of the fifth largest freshwater Chaohu Lake in China, which had been subjected to increasing nutrients and contaminants from population expansion, rapid industrialization and agricultural intensification in recent decades. In present study, surface sediment from the Nanfei River was collected to investigate the anthropogenic impact on distribution and bioavailability of heavy metals. Possible Cd sources along the river were constrained by using Cd isotope signatures and labile concentrations of heavy metals in sediment were determined through the DGT technique for risk assessment. Results showed that Cd in river sediment showed greatest enrichment (EF 0.8–9.4), indicating massive pollution from anthropogenic activities. Among the various possible Cd source materials, urban road dust, industrial soil and chicken manure, displayed higher Cd abundance and enrichment that might contribute to Cd accumulation in river sediment. Cadmium isotopic composition in river sediment was ranged from −0.21 ± 0.01‰ to 0.13 ± 0.03‰, whereas yielded relative variation from −0.31 ± 0.02‰ to 0.23 ± 0.01‰ in source materials. Accordingly, Cd sources along the river were constrained, i.e. traffic and industrial activities in the upper and middle reaches whereas agricultural activities in the lower reaches. Furthermore, the evaluation on ecological risk of heavy metals in sediment on basis of SQGs and DGT-labile concentrations demonstrated that Pb and Zn might pose higher risk on aquatic species. The present study confirmed that Cd isotopes were promising source tracer in environmental studies.
Show more [+] Less [-]Reducing environmental risks of chlorpyrifos application in typical soils by adding appropriate exogenous organic matter: Evidence from a simulated paddy field experiment
2022
Shen, Dahang | Yu, Kaixiang | Hu, Jirong | Zhong, Jiayin | Shen, Guoqing | Ye, Qingfu | Wang, Wei
Chlorpyrifos (CPF), as an organophosphate insecticide extensively used in the modern agricultural system, has been gradually banned in many countries due to its reported health risks to organisms, including humans. This study used simulated paddy field experiments and carbon-14 tracing to explore the possibility of reducing environmental risks of chlorpyrifos application through appropriate agronomic practice. Results showed ¹⁴C-CPF concentration in rice plants planted in the red soil (RS) was significantly higher than that in black soil (BS) and fluvo-aquic soil (FS). The application of biochar and chicken manure in RS reduced ¹⁴C-CPF accumulation in rice plants, and the content of ¹⁴C-CPF in rice grains decreased by 25% and 50%, respectively. Adding biochar to all three soils reduced the migration of ¹⁴C-CPF, especially in FS with the highest risk of ¹⁴C-CPF migration. The addition of chicken manure in FS reduced the migration of ¹⁴C-CPF and the total residual amount of ¹⁴C-CPF in the soil. In addition, chicken manure treatment increased the formation of ¹⁴C-bound residues (BRs) in soils and changed the distribution ¹⁴C-BRs in humus. The results indicated that the degree of environmental risks associated with the CPF application varies with soil types and could be reduced by introducing suitable exogenous organic matter into different soils, which is of great significance for guiding the scientific application of chlorpyrifos in agronomic practices.
Show more [+] Less [-]Impact of different manure-derived dissolved organic matters on the fate of arsenic-antibiotic in co-contaminated paddy soils
2022
Yan, Mengmeng | Zhu, Changxiong | Song, Tingting | Li, Binxu | Su, Shiming | Li, Hongna
Manure application increases the transfer risk of antibiotic resistance to farmland. Especially, its impact remains unclear when it occurs in arsenic (As)-contaminated paddy soils, which is considered as a global environmental problem. In this work, we investigated the fate of antibiotic resistance genes (ARGs) in As-antibiotic co-contaminated paddy soils under the application of manure from different sources (pig manure, cow dung, and chicken manure). Differences in the aliphatic carbon and electron-donating capacities of these dissolved organic matters (DOM) regulated the transformation of iron and As by both biotic and abiotic processes. The regulation by pig manure was stronger than that by cow dung and chicken manure. DOM regulation increased the abundance of As-related functional genes (arsC, arrA, aioA, and arsM) in the soil and accelerated the transformation of As speciation, the highest proportion of As(III) being 45%–61%. Meanwhile, the continuous selection pressure provided by the highly toxic As(III) increased the risk of ARGs and mobile genetic elements (MGEs) via horizontal gene transfer. As-resistant bacteria, including Bacillus, Geobacter, and Desulfitobacterium, were finally considered as potential host bacteria for ARGs and MGEs. In summary, this study clarified the synergistic mechanism of As-antibiotic on the fate of ARGs in co-contaminated paddy soils, and provided practical guidance for the proper application of organic fertilizers.
Show more [+] Less [-]Occurrence of microplastic in livestock and poultry manure in South China
2021
Wu, Rui-Ting | Cai, Ying-Feng | Chen, Ying-Xi | Yang, Yi-Wen | Xing, Si-Cheng | Liao, Xin-Di
Microplastic (MP) contamination in soil has attracted much attention, and increasing evidence suggests that MPs can accumulate in agricultural soils through fertilization by compost. In addition, the most common raw materials for composting are livestock and poultry manure wastes. Because the presence of MPs may threaten the safe utilization of fertilizers composted by livestock and poultry wastes during crop planting, it is necessary to understand the contamination risk of MPs present in livestock and poultry manure. In this study, the distribution of MPs in 19 livestock and poultry farms with 3 different species was investigated by using FTIR microscopy. A total of 115 items manure MPs and 18 items feed MPs were identified as PP and PE types dominated by colorful fragments and fibers. Furthermore, after comparing the compositions of plastic products used in the feeding process, we proposed two transport pathways for MP pollution in manure and one potential transport pathway in feeds. Our result proved that the application of swine and poultry manure directly could be a new route of MPs in agricultural soil, furthermore, the presence of MPs could threaten the safety of resource utilization in agricultural soil by using swine and poultry manure for manure potentially. Not, only that, our study also provided a reference for the remediation of MP-contaminated soil.
Show more [+] Less [-]Effects of multi-year biofumigation on soil bacterial and fungal communities and strawberry yield
2020
Zhang, Daqi | Yan, Dongdong | Cheng, Hongyan | Fang, Wensheng | Huang, Bin | Wang, Xianli | Wang, Xiaoning | Yan, Yue | Ouyang, Canbin | Li, Yuan | Wang, Qiuxia | Cao, Aocheng
Biofumigation is an effective, non-chemical method to control soil-borne pests and diseases and to maximize crop yield. We studied the responses of soil bacterial and fungal communities, the soil’s nutritional state and strawberry yield, when the soil was biofumigated each year for five consecutive years using fresh chicken manure (BioFum). BioFum significantly increased the soil’s NH4+-N, NO3−-N, available P and K and organic matter. Fusarium spp. and Phytophthora spp. which are known to cause plant disease, were significantly decreased after BioFum. In addition, Biofum increased the soil’s temperature, enhanced chlorophyll levels in the leaves of strawberry plants, and the soluble sugar and ascorbic acid content in strawberry fruit. We used high-throughput gene sequencing to monitor changes in the soil’s bacterial and fungal communities. Although BioFum significantly decreased the diversity of these communities, it increased the relative abundance of some biological control agents in the phylum Actinobacteria and the genera Pseudomonas, Bacillus and Chaetomium. An increase in these biological control agents would reduce the incidence of soil-borne pathogens and plant disease. Although strawberry marketable yield using BioFum was higher in the first three years, the decline in the final two years could be due to the accumulation of P and K which may have delayed flowering and fruiting. Methods to overcome yield losses using BioFum need to be developed in the future. Our research, however, showed that BioFum enhanced soil fertility, reduced the presence of soil pathogens, increased the relative abundance of beneficial bacteria and fungi and improved strawberry quality. Unlike chemical soil treatments that can cause pest and disease resistance when used continuously over many years, our multi-year research program on BioFum showed that this treatment provided significant benefits to the soil, plant and strawberry fruit.
Show more [+] Less [-]Impacts of different sources of animal manures on dissemination of human pathogenic bacteria in agricultural soils
2020
Li, Jinyang | Chen, Qinglin | Li, Helian | Li, Shiwei | Liu, Yinghao | Yang, Liyuan | Han, Xuemei
The human pathogenic bacteria (HPB) in animal feces may disseminate to agricultural soils with their land application as organic fertilizer. However, the knowledge about the impacts of different sources and rates of animal manures on the temporal changes of soil HPB remains limited, which hamper our ability to estimate the potential risks of their land application. Here, we constructed an HPB database including 565 bacterial strains. By blasting the 16 S rRNA gene sequences against the database we explored the occurrence and fate of HPB in soil microcosms treated with two rates of swine, poultry or cattle manures. A total of 30 HPB were detected in all of manure and soil samples. Poultry manure at the high level obviously improved the abundance of soil HPB. The application of swine manure could introduce concomitant HPB into the soils. Of which, Pseudomonas syringae pv. syringae B728a and Escherichia coli APEC O78 may deserve more attention because of their survival for a few days in manured soils and being possible hosts of diverse antibiotic resistance genes (ARGs) as revealed by co-occurrence pattern. Bayesian source tracking analysis showed that the HPB derived from swine manure had a higher contribution to soil pathogenic communities than those from poultry or cattle manures in early days of incubation. Mantel test together with variation partitioning analysis suggested that bacterial community and soil physicochemical properties were the dominant factors determining the profile of HPB and contributed 64.7% of the total variations. Overall, our results provided experimental evidence that application of animal manures could facilitate the potential dissemination of HPB in soil environment, which should arouse sufficient attention in agriculture practice and management to avoid the threat to human health.
Show more [+] Less [-]Biotransformation of arsenic-containing roxarsone by an aerobic soil bacterium Enterobacter sp. CZ-1
2019
Huang, Ke | Peng, Hanyong | Gao, Fan | Liu, Qingqing | Lu, Xiufen | Shen, Qirong | Le, X Chris | Zhao, Fang-Jie
Roxarsone (3-nitro-4-hydroxyphenylarsonic acid, ROX) is an arsenic-containing compound widely used as a feed additive in poultry industries. ROX excreted in chicken manure can be transformed by microbes to different arsenic species in the environment. To date, most of the studies on microbial transformation of ROX have focused on anaerobic microorganisms. Here, we isolated a pure cultured aerobic ROX-transforming bacterial strain, CZ-1, from an arsenic-contaminated paddy soil. On the basis of 16S rRNA gene sequence, strain CZ-1 was classified as a member of the genus Enterobacter. During ROX biotransformation by strain CZ-1, five metabolites including arsenate (As[V]), arsenite (As[III]), N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA), 3-amino-4-hydroxyphenylarsonic acid (3-AHPAA) and a novel sulfur-containing arsenic species (AsC₉H₁₃N₂O₆S) were detected and identified based on high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS), HPLC-ICP-MS/electrospray ionization mass spectrometry (ESI-MS) and HPLC-electrospray ionization hybrid quadrupole time-of-flight mass spectrometry (ESI-qTOF-MS) analyses. N-AHPAA and 3-AHPAA were the main products, and 3-AHPAA could also be transformed to N-AHPAA. Based on the results, we propose a novel ROX biotransformation pathway by Enterobacter. sp CZ-1, in which the nitro group of ROX is first reduced to amino group (3-AHPAA) and then acetylated to N-AHPAA.
Show more [+] Less [-]Using column experiments to examine transport of As and other trace elements released from poultry litter: Implications for trace element mobility in agricultural watersheds
2017
Oyewumi, Oluyinka | Schreiber, Madeline E.
Trace elements are added to poultry feed to control infection and improve weight gain. However, the fate of these trace elements in poultry litter is poorly understood. Because poultry litter is applied as fertilizer in many agricultural regions, evaluation of the environmental processes that influence the mobility of litter-derived trace elements is critical for predicting if trace elements are retained in soil or released to water. This study examined the effect of dissolved organic carbon (DOC) in poultry litter leachate on the fate and transport of litter-derived elements (As, Cu, P and Zn) using laboratory column experiments with soil collected from the Delmarva Peninsula (Mid-Atlantic, USA), a region of intense poultry production. Results of the experiments showed that DOC enhanced the mobility of all of the studied elements. However, despite the increased mobility, 60–70% of Zn, As and P mass was retained within the soil. In contrast, almost all of the Cu was mobilized in the litter leachate experiments, with very little retention in soil. Overall, our results demonstrate that the mobility of As, Cu, Zn and P in soils which receive poultry litter application is strongly influenced by both litter leachate composition, specifically organic acids, and adsorption to soil. Results have implications for understanding fate and transport of trace elements released from litter application to soil water and groundwater, which can affect both human health and the environment.
Show more [+] Less [-]Effects of different additives and aerobic composting factors on heavy metal bioavailability reduction and compost parameters: A meta-analysis
2022
Yousif Abdellah, Yousif Abdelrahman | Shi, Zhao-Ji | Luo, Yu-Sen | Hou, Wen-Tao | Yang, Xi | Wang, Rui-Long
Additives are considered a promising approach to accelerate the composting process and alleviate the dissemination of pollutants to the environment. However, nearly all previous articles have focused on the impact of additive amounts on the reduction of HMs, which may not fully represent the main factor shaping HMs bioavailability status during composting. Simultaneously, previous reviews only explored the impacts, speciation, and toxicity mechanism of HMs during composting. Hence, a global-scale meta-analysis was conducted to investigate the response patterns of HMs bioavailability and compost parameters to different additives, composting duration, and composting factors (additive types, feedstock, bulking agents, and composting methods) by measuring the weighted mean values of the response ratio "[ln (RR)]" and size effect (%). The results revealed that additives significantly lessened HMs bioavailability by ≥ 40% in the final compost products than controls. The bioavailability decline rates were −40%, −60%, −57%, −55%, −42%, and −44% for Zn, Pb, Ni, Cu, Cr, and Cd. Simultaneously, additives significantly improved the total nitrogen (TN) (+16%), pH (+5%), and temperature (+5%), and decreased total organic carbon (TOC) (−17%), moisture content (MC) (−18%), and C/N ratio (−19%). Furthermore, we found that the prolongation of composting time significantly promoted the effect of additives on declining HMs bioavailability (p < 0.05). Nevertheless, increasing additive amounts revealed an insignificant impact on decreasing the HMs bioavailability (p > 0.05). Eventually, using zeolite as an additive, chicken manure as feedstock, sawdust as a bulking agent, and a reactor as composting method had the most significant reduction effect on HMs bioavailability (p < 0.05). The findings of this meta-analysis may contribute to the selection, modification, and application of additives and composting factors to manage the level of bioavailable HMs in the compost products.
Show more [+] Less [-]Profiles of tetracycline resistance genes in paddy soils with three different organic fertilizer applications
2022
Qing, Li | Qigen, Dai | Jian, Hu | Hongjun, Wu | Jingdu, Chen
The rapid expansion of organic rice cultivation areas have been accompanied by increased application of organic fertilizers. The high prevalence of soil antibiotic resistance caused by organic fertilizer application poses a severe threat to the agricultural and soil ecosystems. To date, research efforts and understanding of the effects and mechanism of action of the various organic fertilizers on antibiotic resistance in paddy soils remain poorly investigated. Tetracycline resistance genes (TRGs, including tetB, tetC, tetL, tetZ, tetM, tetO, tetT, and tetX), class 1 integron-integrase gene (intI1) and bacterial communities were characterized using quantitative-PCR and Illumina MiSeq sequencing, in paddy soils exposed to inorganic fertilizer (NPK), animal-derived organic fertilizer (AOF, composted swine and/or chicken manure), plant-derived organic fertilizer (POF, rapeseed cake and/or astragalus) and commercial organic fertilizer (COF, composted of animal manure mix with crop residues) applications. Compared with NPK, AOF applications significantly increased the relative abundance of TRGs, which was predominantly expressed in the increase of the relative abundance of tetC, tetM, tetO, tetT, and tetX, while POF and COF had no significant effect on the relative abundance of TRGs. Principal coordinate analysis revealed that AOF and POF significantly altered bacterial communities in paddy soils relative to NPK, while COF had no significant change of bacterial communities. Variation partitioning analysis indicated that soil physicochemical properties were the decisive factors for the changes of TRGs in organic paddy fields. Furthermore, redundancy analysis and the Mantel test showed that TRG profiles in AOF applied paddy soils were strongly influenced by electrical conductivity (EC). Total nitrogen (TN) and organic matter (OM) affected the distribution of TRGs in COF and POF applied paddy soils through a different mechanism. This study provides insights into the impacts of different types of organic fertilizer on the profiles of TRGs in paddy soils.
Show more [+] Less [-]