Refine search
Results 1-3 of 3
Dissipation behavior and dietary risk assessment of pyridaben in open field strawberries and cucumber under Egyptian cultivation conditions
2021
Malhat, Farag | Saber, El-Sayed | Anagnostopoulos, Chris | Shokr, Shokr Abdelsalam
Pyridaben, an inhibitor of mitochondrial electron transport at complex I, is authorized in Egypt as an insecticide/acaricide for strawberries and cucumbers; thus the investigation of residues in the final consumed product is essential as to ensure consumer safety and trade barriers. Therefore, residue trials were conducted according to the in force and more critical Good Agricultural Practices (GAPs) as to investigate the dissipation rate of the compound on both crops and the terminal residues in the final products. Results showed that the residue decline fits a first-order decay process with calculated half-lives of 1 and 6.4 days for cucumbers and strawberries, respectively. Dietary risk assessment was performed based on the risk quotients (RQ) method and the EFSA PRIMo model demonstrating that the dietary exposure to pyridaben residues from cucumber and strawberry consumption, applied either according to the in force or more critical GAPs, does not pose unacceptable health risk to Egyptian and European consumers.
Show more [+] Less [-]Part I: Temporal and spatial distribution of multiclass pesticide residues in lake waters of Northern Greece: application of an optimized SPE-UPLC-MS/MS pretreatment and analytical method
2014
Kalogridi, Eleni-Chrysoula | Christophoridis, Christophoros | Bizani, Erasmia | Drimaropoulou, Garyfallia | Fytianos, Konstantinos
The present work describes the application of an analytical procedure, utilizing ultra performance liquid chromatography (UPLC) coupled with mass spectrometry instrumentation, for the determination of 253 multiclass pesticides, classified in six different groups. Solid phase extraction was applied for the isolation and pre-concentration of target compounds in water samples. Surface waters of the lakes located in Northern Greece (Volvi, Doirani, and Kerkini), were collected in two time periods (fall/winter 2010 and spring/summer 2011) and analyzed, applying the developed analytical methods. Spatial distribution of detected pesticides was visualized using interpolation methods and geographical information systems (GIS). Pesticides with maximum concentrations were amitrole, propoxur, simazine, chlorpyrifos, carbendazim, triazophos, disulfoton-sulfone, pyridaben, sebuthylazine, terbuthylazine, atrazine, atrazine-desethyl, bensulfuron-methyl, metobromuron, metribuzin, rotenone, pyriproxyfen, and rimsulfuron. In Lake Kerkini, mainly carbamates and triazines were determined at elevated concentrations, near the coastal point of the NW side of the lake. Seasonal variations were strong among the applied pesticide classes and determined concentrations, indicating the contribution of pesticide application patterns and rainfall. Lake Doirani exhibited organophosphate pesticides at higher concentrations mainly at coastal points, while triazines emerged as the main pollutant during spring sampling. Lake Volvi exhibited the highest pesticide concentrations, mostly triazines and ureas at the central part of the lake. The occurrence of extreme values and nonconstant seasonal variations indicated that the concentrations were increased disproportionately during the second sampling, as a result of the varying contribution of pollution sources right after the application period. In all cases, the total concentration of pesticides increased during the second sampling period.
Show more [+] Less [-]Part II: temporal and spatial distribution of multiclass pesticide residues in lake sediments of northern Greece: application of an optimized MAE-LC-MS/MS pretreatment and analytical method
2014
Kalogridi, Eleni-Chrysoula | Christophoridis, Christophoros | Bizani, Erasmia | Drimaropoulou, Garyfallia | Fytianos, Konstantinos
The development and application of an analytical methodology for the pretreatment and determination of 253 multiclass pesticides, in lake sediment samples, using liquid chromatography coupled with mass spectrometry (LC-MS/MS) are described in this work. Sediments of lakes Volvi, Doirani, and Kerkini, located in northern Greece, were collected in two-time periods (fall/winter 2010 and spring/summer 2011) and analyzed, applying the developed analytical methodology. Microwave-assisted extraction (MAE) was applied to extract the pesticide residues from lake sediment samples. Analytical results were stored, categorized, and visualized using geographical information systems, in order to assess and observe spatial and temporal variations of the pollution. Main pesticides that were detected included the following: amitrole, tebuconazole, phoxim, diniconazole, sethoxydim, temephos, tetrachlorvinphos, pendimethalin, boscalid, disulfoton sulfone, lenacil, propiconazole, cycloxydim, pyridaben, and terbuthylazine. Amitrole, diniconazole, and tebuconazole were found to be common in all three lakes. Lakes Kerkini and Doirani exhibited increased concentrations during the first sampling period (winter 2010) with predominant pesticide classes, triazines/triazoles and organophosphates. Pollution is mainly located near the populated villages of the lakes and the nearby cultivations. During the second sampling period, pesticide concentrations appear lower and located in sediments near the center of the lake. Lake Volvi exhibits increased pesticide concentrations during the second sampling period, temporal and spatial variations and different pesticide profile pattern. Increased pollution occurs near the center of the lake during the first sampling period, mainly comprised by triazines/triazoles and organophosphates. During the second sampling period, the majority of the sediment samples demonstrated a different pesticide profile dominated by unclassified pesticides and triazines/triazoles. Mineralogical analysis of the samples demonstrates that sediments are mainly composed of clay, mud, and sand particles, and they present spatial variations. Near the center of the lakes, sediments appear to be more fine-grained with higher clay content and are more likely to adsorb pesticides.
Show more [+] Less [-]