Refine search
Results 1-10 of 38
Benzalkonium chloride alters phenotypic and genotypic antibiotic resistance profiles in a source water used for drinking water treatment
2020
Harrison, Katherine R. | Kappell, Anthony D. | McNamara, Patrick J.
Antibiotic resistance is a major public health concern. Triclosan is an antimicrobial compound with direct links to antibiotic resistance that was widely used in soaps in the U.S. until its ban by the U.S. Food and Drug Administration. Benzalkonium chloride (BAC), a quaternary ammonium compound, has widely replaced triclosan in soaps marketed as an antibacterial. BAC has been detected in surface waters and its presence will likely increase following increased use in soap products. The objective of this study was to determine the effect of BAC on relative abundance of antibiotic resistance in a bacterial community from a surface water used as a source for drinking water treatment. Bench-scale microcosm experiments were conducted with microbial communities amended with BAC at concentrations ranging from 0.1 μg L⁻¹ to 500 μg L⁻¹. Phenotypic antibiotic resistance was quantified by culturing bacteria in the presence of different antibiotics, and genotypic resistance was determined using qPCR to quantify antibiotic resistance genes (ARGs). BAC at concentrations ranging from 0.1 μg L⁻¹ to 500 μg L⁻¹ was found to positively select for bacteria resistant to ciprofloxacin and sulfamethoxazole, and negatively select against bacteria with resistance to six other antibiotics. Exposure to BAC for 14 days increased the relative abundance of sul1 and blaTEM. This study re-highlights the importance of employing both culture and non-culture-based techniques to identify selection for antibiotic resistance. The widespread use of BAC will likely impact antibiotic resistance profiles of bacteria in the environment, including in source waters used for drinking water, wastewater treatment plants, and natural waterways.
Show more [+] Less [-]Ammonium release from a blanket peatland into headwater stream systems
2012
Daniels, S.M. | Evans, M.G. | Agnew, C.T. | Allott, T.E.H.
Hydrochemical sampling of South Pennine (UK) headwater streams draining eroded upland peatlands demonstrates these systems are nitrogen saturated, with significant leaching of dissolved inorganic nitrogen (DIN), particularly ammonium, during both stormflow and baseflow conditions. DIN leaching at sub-catchment scale is controlled by geomorphological context; in catchments with low gully densities ammonium leaching dominates whereas highly gullied catchments leach ammonium and nitrate since lower water tables and increased aeration encourages nitrification. Stormflow flux calculations indicate that: approximately equivalent amounts of nitrate are deposited and exported; ammonium export significantly exceeds atmospheric inputs. This suggests two ammonium sources: high atmospheric loadings; and mineralisation of organic nitrogen stored in peat. Downstream trends indicate rapid transformation of leached ammonium into nitrate. It is important that low-order headwater streams are adequately considered when assessing impacts of atmospheric loads on the hydrochemistry of stream networks, especially with respect to erosion, climate change and reduced precipitation.
Show more [+] Less [-]Soil nitrogen transformations under elevated atmospheric CO₂ and O₃ during the soybean growing season
2011
Pujol Pereira, Engil Isadora | Chung, Haegeun | Scow, Kate | Sadowsky, M. J. (Michael J.) | van Kessel, Chris | Six, Johan
We investigated the influence of elevated CO₂ and O₃ on soil N cycling within the soybean growing season and across soil environments (i.e., rhizosphere and bulk soil) at the Soybean Free Air Concentration Enrichment (SoyFACE) experiment in Illinois, USA. Elevated O₃ decreased soil mineral N likely through a reduction in plant material input and increased denitrification, which was evidenced by the greater abundance of the denitrifier gene nosZ. Elevated CO₂ did not alter the parameters evaluated and both elevated CO₂ and O₃ showed no interactive effects on nitrifier and denitrifier abundance, nor on total and mineral N concentrations. These results indicate that elevated CO₂ may have limited effects on N transformations in soybean agroecosystems. However, elevated O₃ can lead to a decrease in soil N availability in both bulk and rhizosphere soils, and this likely also affects ecosystem productivity by reducing the mineralization rates of plant-derived residues.
Show more [+] Less [-]The importance of ammonium mobility in nitrogen-impacted unfertilized grasslands: A critical reassessment
2009
Mian, Ishaq Ahmad | Riaz, Muhammad | Cresser, Malcolm S.
The physico-chemical absorption characteristics of ammonium-N for 10 soils from 5 profiles in York, UK, show its high potential mobility in N deposition-impacted, unfertilized, permanent grassland soils. Substantial proportions of ammonium-N inputs were retained in the solution phase, indicating that ammonium translocation plays an important role in the N cycling in, and losses from, such soils. This conclusion was further supported by measuring the ammonium-N leaching from intact plant/soil microcosms. The ammonium-N absorption characteristics apparently varied with soil pH, depth and soil texture. It was concluded for the most acid soils especially that ammonium-N leached from litter horizons could be seriously limiting the capacity of underlying soils to retain ammonium. Contrary to common opinion, more attention therefore needs to be paid to ammonium leaching and its potential role in biogeochemical N cycling in semi-natural soil systems subject to atmospheric pollution. mmonium mobility is more important than previously thought in N-impacted, unfertilized grasslands.
Show more [+] Less [-]Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19?
2021
Chen, Bo | Han, Jie | Dai, Han | Jia, Puqi
During the current pandemic, chemical disinfectants are ubiquitously and routinely used in community environments, especially on common touch surfaces in public settings, as a means of controlling the virus spread. An underappreciated risk in current regulatory guidelines and scholarly discussions, however, is that the persisting input of chemical disinfectants can exacerbate the growth of biocide-tolerant and antibiotic-resistant bacteria on those surfaces and allow their direct transfers to humans. For COVID-19, the most commonly used disinfecting agents are quaternary ammonium compounds, hydrogen peroxide, sodium hypochlorite, and ethanol, which account for two-thirds of the active ingredients in current EPA-approved disinfectant products for the novel coronavirus. Tolerance to each of these compounds, which can be either intrinsic or acquired, has been observed on various bacterial pathogens. Of those, mutations and horizontal gene transfer, upregulation of efflux pumps, membrane alteration, and biofilm formation are the common mechanisms conferring biocide tolerance in bacteria. Further, the linkage between disinfectant use and antibiotic resistance was suggested in laboratory and real-life settings. Evidence showed that substantial bacterial transfers to hands could effectuate from short contacts with surrounding surfaces and further from fingers to lips. While current literature on disinfectant-induced antimicrobial resistance predominantly focuses on municipal wastes and the natural environments, in reality the community and public settings are most severely impacted by intensive and regular chemical disinfecting during COVID-19 and, due to their proximity to humans, biocide-tolerant and antibiotic-resistant bacteria emerged in these environments may pose risks of direct transfers to humans, particularly in densely populated urban communities. Here we highlight these risk factors by reviewing the most pertinent and up-to-date evidence, and provide several feasible strategies to mitigate these risks in the scenario of a prolonging pandemic.
Show more [+] Less [-]Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals
2017
Szekeres, Edina | Baricz, Andreea | Chiriac, Cecilia Maria | Farkas, Anca | Opris, Ocsana | Soran, Maria-Loredana | Andrei, Adrian-Stefan | Rudi, Knut | Balcázar, José Luis | Dragoș, Nicolae | Coman, Cristian
Antimicrobial resistance represents a growing and significant public health threat, which requires a global response to develop effective strategies and mitigate the emergence and spread of this phenomenon in clinical and environmental settings. We investigated, therefore, the occurrence and abundance of several antibiotics and antibiotic resistance genes (ARGs), as well as bacterial community composition in wastewater effluents from different hospitals located in the Cluj County, Romania. Antibiotic concentrations ranged between 3.67 and 53.05 μg L−1, and the most abundant antibiotic classes were β-lactams, glycopeptides, and trimethoprim. Among the ARGs detected, 14 genes confer resistance to β-lactams, aminoglycosides, chloramphenicol, macrolide-lincosamide-streptogramin B (MLSB) antibiotics, sulfonamides, and tetracyclines. Genes encoding quaternary ammonium resistance and a transposon-related element were also detected. The sulI and qacEΔ1 genes, which confer resistance to sulfonamides and quaternary ammonium, had the highest relative abundance with values ranging from 5.33 × 10−2 to 1.94 × 10−1 and 1.94 × 10−2 to 4.89 × 10−2 copies/16 rRNA gene copies, respectively. The dominant phyla detected in the hospital wastewater samples were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria. Among selected hospitals, one of them applied an activated sludge and chlorine disinfection process before releasing the effluent to the municipal collector. This conventional wastewater treatment showed moderate removal efficiency of the studied pollutants, with a 55–81% decrease in antibiotic concentrations, 1–3 order of magnitude lower relative abundance of ARGs, but with a slight increase of some potentially pathogenic bacteria. Given this, hospital wastewaters (raw or treated) may contribute to the spread of these emerging pollutants in the receiving environments. To the best of our knowledge, this study quantified for the first time the abundance of antibiotics and ARGs in wastewater effluents from different Romanian hospitals.
Show more [+] Less [-]Occurrence of quaternary ammonium compounds (QACs) and their application as a tracer for sewage derived pollution in urban estuarine sediments
2014
Li, Xiaolin | Luo, Xiaojun | Mai, Bixian | Liu, Jingqin | Chen, Li | Lin, Shanshan
Particle reactive organic contaminants in estuarine sediments can lead to various environmental problems affecting ecosystem and public health. In this study, the occurrence and homologous distribution pattern of quaternary ammonium compounds (QACs) in the surficial sediments collected from the Pearl River Estuary (PRE), China were examined along with polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs). The composition pattern of the QACs was found to be uniform in most of the sediments analyzed throughout the PRE, and the average composition pattern was identical to that determined in the sewage sludge from Guangzhou, the biggest city in the PRE. Dialkyldimethylammonium compounds, the most abundant type of QACs, positively correlated to the total concentrations of PCBs and PBDEs in most of the sediments with similar composition patterns. Therefore, the QACs are proposed as potential tracers to evaluate the transport of sewage-derived pollution in estuarine environments.
Show more [+] Less [-]Biomass burning in eastern Europe during spring 2006 caused high deposition of ammonium in northern Fennoscandia
2013
Karlsson, Per Erik | Ferm, Martin | Tømmervik, Hans | Hole, Lars R. | Pihl Karlsson, Gunilla | Ruoho-Airola, Tuija | Aas, Wenche | Hellsten, Sofie | Akselsson, Cecilia | Mikkelsen, Teis Nørgaard | Nihlgård, Bengt
High air concentrations of ammonium were detected at low and high altitude sites in Sweden, Finland and Norway during the spring 2006, coinciding with polluted air from biomass burning in eastern Europe passing over central and northern Fennoscandia. Unusually high values for throughfall deposition of ammonium were detected at one low altitude site and several high altitude sites in north Sweden. The occurrence of the high ammonium in throughfall differed between the summer months 2006, most likely related to the timing of precipitation events. The ammonia dry deposition may have contributed to unusual visible injuries on the tree vegetation in northern Fennoscandia that occurred during 2006, in combination with high ozone concentrations. It is concluded that long-range transport of ammonium from large-scale biomass burning may contribute substantially to the nitrogen load at northern latitudes.
Show more [+] Less [-]Ammonium and nitrate tolerance in lichens
2010
Since lichens lack roots and take up water, solutes and gases over the entire thallus surface, these organisms respond more sensitively to changes in atmospheric purity than vascular plants. After centuries where effects of sulphur dioxide and acidity were in the focus of research on atmospheric chemistry and lichens, recently the globally increased levels of ammonia and nitrate increasingly affect lichen vegetation and gave rise to intense research on the tolerance of lichens to nitrogen pollution. The present paper discusses the main findings on the uptake of ammonia and nitrate in the lichen symbiosis and to the tolerance of lichens to eutrophication. Ammonia and nitrate are both efficiently taken up under ambient conditions. The tolerance to high nitrogen levels depends, among others, on the capability of the photobiont to provide sufficient amounts of carbon skeletons for ammonia assimilation. Lowly productive lichens are apparently predisposed to be sensitive to excess nitrogen.
Show more [+] Less [-]Enhanced removal of per- and polyfluoroalkyl substances in complex matrices by polyDADMAC-coated regenerable granular activated carbon
2022
Ramos, Pia | Singh Kalra, Shashank | Johnson, Nicholas W. | Khor, Chia Miang | Borthakur, Annesh | Cranmer, Brian | Dooley, Gregory | Mohanty, Sanjay K. | Jassby, David | Blotevogel, Jens | Mahendra, Shaily
Granular activated carbon (GAC) has been used to remove per- and polyfluoroalkyl substances (PFASs) from industrial or AFFF-impacted waters, but its effectiveness can be low because adsorption of short-chained PFASs is ineffective and its sites are exhausted rapidly by co-contaminants. To increase adsorption of anionic PFASs on GAC by electrostatic attractions, we modified GAC's surface with the cationic polymer poly diallyldimethylammonium chloride (polyDADMAC) and tested its capacity in complex water matrices containing dissolved salts and humic acid. Amending with concentrations of polyDADMAC as low as 0.00025% enhanced GAC's adsorption capacity for PFASs, even in the presence of competing ions. This suggests that electrostatic interactions with polyDADMAC's quaternary ammonium functional groups helped bind organic and inorganic ions as well as the headgroup of short-chain PFASs, allowing more overall PFAS removal by GAC. Evaluating the effect of polymer dose is important because excessive addition can block pores and reduce overall PFAS removal rather than increase it. To decrease the waste associated with this adsorption strategy by making the adsorbent viable for more than one saturation cycle, a regeneration method is proposed which uses low-power ultrasound to enhance the desorption of PFASs from the polyDADMAC-GAC with minimum disruption to the adsorbent's structure. Re-modification with the polymer after sonication resulted in a negligible decrease in the sorbent's capacity over four saturation rounds. These results support consideration of polyDADMAC-modified GAC as an effective regenerable adsorbent for ex-situ concentration step of both short and long-chain PFASs from real waters with high concentrations of competing ions and low PFAS loads.
Show more [+] Less [-]