Refine search
Results 1-5 of 5
Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman–Monteith approach combined with a photosynthesis-dependent stomatal model
2014
Kitao, Mitsutoshi | Komatsu, Masabumi | Hoshika, Yasutomo | Yazaki, Kenichi | Yoshimura, Kenichi | Fujii, Saori | Miyama, Takafumi | Kominami, Yuji
Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman–Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O3 uptake, even when the Penman–Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O3 uptake through stomata, as AOT40 peaked in April, but with O3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O3 uptake in springtime, even when the highest O3 concentrations were observed.
Show more [+] Less [-]Growth overcompensation against O3 exposure in two Japanese oak species, Quercus mongolica var. crispula and Quercus serrata, grown under elevated CO2
2015
Kitao, Mitsutoshi | Komatsu, Masabumi | Yazaki, Kenichi | Kitaoka, Satoshi | Tobita, Hiroyuki
To assess the effects of elevated concentrations of carbon dioxide (CO2) and ozone (O3) on the growth of two mid-successional oak species native to East Asia, Quercus mongolica var. crispula and Quercus serrata, we measured gas exchange and biomass allocation in seedlings (initially 1-year-old) grown under combinations of elevated CO2 (550 μmol mol−1) and O3 (twice-ambient) for two growing seasons in an open-field experiment in which root growth was not limited. Both the oak species showed a significant growth enhancement under the combination of elevated CO2 and O3 (indicated by total dry mass; over twice of ambient-grown plants, p < .05), which probably resulted from a preferable biomass partitioning into leaves induced by O3 and a predominant enhancement of photosynthesis under elevated CO2. Such an over-compensative response in the two Japanese oak species resulted in greater plant growth under the combination of elevated CO2 and O3 than elevated CO2 alone.
Show more [+] Less [-]Modeling of stomatal conductance to estimate stomatal ozone uptake by Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla
2014
Kinose, Yoshiyuki | Azuchi, Fumika | Uehara, Yui | Kanomata, Tomoaki | Kobayashi, Ayumi | Yamaguchi, Masahiro | Izuta, Takeshi
To construct stomatal conductance models and estimate stomatal O3 uptake for Fagus crenata, Quercus serrata, Quercus mongolica var. crispula and Betula platyphylla, stomatal conductance (gs) was measured in seedlings of the four tree species. Better estimates of gs were made by incorporating the acute effects of O3 on gs into the models and the models could explain 34–52% of the variability in gs. Although the O3 concentration was relatively high in spring from April to May, COU of F. crenata, Q. serrata and Q. mongolica var. crispula were relatively low and the ratios of COU in spring to total COU in one year were 16.8% in all tree species because of low gs limited mainly by leaf pre-maturation and/or low temperature. The COU of B. platyphylla were relatively high mainly because of rapid leaf maturation and lower optimal temperature for stomatal opening.
Show more [+] Less [-]Contribution of dissolved organic nitrogen deposition to nitrogen saturation in a forested mountainous watershed in Tsukui, Central Japan
2007
Ham, Young-Sik | Tamiya, Sayaka | Choi, I-Song
Nitrogen (N) budget was estimated with dissolved inorganic N (DIN) and dissolved organic N (DON) in a forested mountainous watershed in Tsukui, Kanagawa Prefecture, about 50 km west of Tokyo in Central Japan. The forest vegetation in the watershed was dominant by Konara oak (Quercus serrata) and Korean hornbeam (Carpinus tschonoskii), and Japanese cedar (Cryptomeria japonica). Nitrate (NO₃ -) concentration in the watershed streamwater was averagely high (98.0 ±± 19 (±± SD, n = 36) μmol L-¹) during 2001-2003. There was no seasonal and annual changes in the stream NO- ₃ concentration even though the highest N uptake rate presumably occurred during the spring of plant growing season, a fact indicating that N availability was in excess of biotic demands. The DON deposition rates (DON input rates) in open area and forest area were estimated as one of the main N sources, accounting for about 32% of total dissolved N (TDN). It was estimated that a part of the DON input rate contributed to the excessive stream NO- ₃ output rate under the condition of the rapid mineralization and nitrification rates, which annual DON deposition rates were positively correlated with the stream NO₃ - output rates. The DON retention rate in the DON budget had a potential capacity, which contributed to the excessive stream NO- ₃ output rate without other N contributions (e.g. forest floor N or soil N).
Show more [+] Less [-]Effects of Soil Amelioration and Tree Planting on Restoration of an Air-Pollution Damaged Forest in South Korea
2007
Lee, Chang Seok | Moon, Jeong Sook | Cho, Yong Chan
In order to restore the forest ecosystem in the vicinity of an industrial park, Ulsan, southeastern Korea, which has been heavily acidified by air pollution, a preliminary experiment by applying tolerant plants selected through several procedures, and dolomite and sewage sludge as soil ameliorators was carried out. Furthermore, a restoration based on the results was executed and the effects were evaluated based on the creation of safe sites, where new species can establish: regeneration of the forest with species similar in composition to the natural vegetation of native forests that are distant from the industrial park; increase in species diversity. In a preliminary study, the necessity of soil amelioration was diagnosed. Quercus serrata, Alnus firma and Ligustrum japonicum, which represent for tree, subtree, and shrub layers of vegetation in this region, were used as sample plants. Dolomite, sludge, and a mixture of both materials were applied as soil ameliorators. Bare ground (BG), and two grasslands dominated by forbs (GF) and grass (GG), respectively were designated as experimental plots based on a vegetation map of the corresponding area. BG and GF plots, which have lower organic matter contents, increased the growth of sample plants in response to soil amelioration, whereas that with higher contents, GG plot, did not show this response. The result suggests that necessity of soil amelioration depends on site quality. The effects of soil amelioration depended also on the sample plants. This difference is due to an ecological property of A. firma, which can fix atmospheric nitrogen through a symbiotic relationship with actinomycetic fungi. This result implies that this alder could be used as a substitute for soil ameliorators in restoration plan of this area. The height and standing crop of undergrowth, which forms dense grass mat and thereby impedes establishment of new plants, decreased in the restored stands. Such a decrease in the height and biomass of undergrowth could be recognized as providing safe sites, in which the other plants can invade, by removing the dense carpet formed by Miscanthus sinensis. The results of stand ordination showed a progression of the former bare grounds to either M. sinensis (GG) or Pueraria thunbergiana (GF) stands, suggesting a natural recovery through succession toward the stands dominated by both plants. But the change was not progressed beyond the grassland stage. Active restoration practice, which was carried out by applying tolerant plants, however, led to a change toward species composition similar to the natural vegetation before devastation. Furthermore, restored stands reflected the restoration effect by showing higher diversity than the stands in the degraded state. These results showed that the restorative treatment carried out by introducing tolerant plants functioned toward increasing both biological integrity and ecological stability and thereby could meet the restoration goal.
Show more [+] Less [-]