Refine search
Results 1-10 of 90
Role of prey subcellular distribution on the bioaccumulation of yttrium (Y) in the rainbow trout
2020
Cardon, Pierre-Yves | Roques, Olivier | Caron, Antoine | Rosabal, Maikel | Fortin, Claude | Amyot, Marc
Our knowledge of the processes leading to the bioaccumulation of rare earth elements (REE) in aquatic biota is limited. As the contamination of freshwater ecosystems by anthropogenic REE have recently been reported, it becomes increasingly urgent to understand how these metals are transferred to freshwater organisms in order to develop appropriate guidelines. We exposed rainbow trout (Oncorhynchus mykiss) to an REE, yttrium (Y), to either a range of Y-contaminated prey (Daphnia magna) or a range of Y-contaminated water. For the feeding experiment, the relationship between the Y assimilation by O. mykiss and the Y subcellular fractionation in D. magna was evaluated. Assimilation efficiency of Y by O. mykiss was low, ranging from 0.8 to 3%. These values were close to the proportion of Y accumulated in D. magna cytosol, 0.6–2%, a theoretical trophically available fraction. Moreover, under our laboratory conditions, water appeared as a poor source of Y transfer to O. mykiss. Regardless of the source of contamination, a similar pattern of Y bioaccumulation among O. mykiss tissues was revealed: muscles < liver < gills < intestine. We conclude that the trophic transfer potential of Y is low and the evaluation of Y burden in prey cytosol appears to be a relevant predictor of Y assimilation by their consumers.
Show more [+] Less [-]Phytotoxicity of individual and binary mixtures of rare earth elements (Y, La, and Ce) in relation to bioavailability
2019
Gong, Bing | He, Erkai | Qiu, Hao | Li, Jianqiu | Ji, Jie | Zhao, Ling | Cao, Xinde
Rare earth elements (REEs) are typically present as mixtures in the environment, but a quantitative understanding of mixture toxicity and interactions of REEs is still lacking. Here, we examined the toxicity to wheat (Triticum aestivum L.) of Y, La, and Ce when applied individually and in combination. Both concentration addition (CA) and independent action (IA) reference models were used for mixture toxicity analysis because the toxicity mechanisms of REEs remain obscure. Upon single exposure, the EC50s of Y, La, and Ce, expressed as dissolved concentrations, were 1.73 ± 0.24 μM, 2.59 ± 0.23 μM, and 1.50 ± 0.22 μM, respectively. The toxicity measured with relative root elongation followed La < Y ≈ Ce, irrespective of the dose descriptors. The use of CA and IA provided similar estimates of REE mixture interactions and toxicity. When expressed as dissolved metal concentrations, nearly additive effects were observed in Y-La and La-Ce mixtures, while antagonistic interactions were seen in Y-Ce mixtures. When expressed as free metal activities, antagonistic interactions were found for all three binary mixtures. This can be explained by a competitive effect of REEs ions for binding to the active sites of plant roots. The application of a more elaborate MIXTOX model in conjunction with the free ion activities, which incorporates the non-additive interactions and bioavailability-modifying factors, well predicted the mixture toxicity (with >92% of toxicity variations explained). Our results highlighted the importance of considering mixture interactions and subsequent bioavailability in assessing the joint toxicity of REEs.
Show more [+] Less [-]Rare-earth element yttrium enhances the tolerance of curly-leaf pondweed (Potamogeton crispus) to acute nickel toxicity
2019
Lyu, Kai | Wang, Xuan | Wang, Lei | Wang, Guoxiang
Nickel is a ubiquitous heavy-metal pollutant in lakes and severely affects aquatic organisms. Aquatic plants are often initially linked to having heavy metal contents and further are proposed as phytoremediation agent to remove heavy metal from water. Although the toxic effects of nickel on aquatic plants are thoroughly explored, the effective investigation to increase Ni tolerance is still in its infancy. The role of rare-earth elements (REEs) in plant resisting heavy-metal pollution has recently received considerable interest. To explore the physiological effects of REEs on Potamogeton crispus under Ni stress, we explored whether or not the additive exposure to low-dose yttrium (Y; 2.5 μM) promotes the polyamine metabolism, antioxidation, and photosynthesis performance of P. crispus under Ni stress values of 0, 50, 100, 150, and 200 μM. Results showed that Y exposure did not influence Ni bioaccumulation in P. crispus. Furthermore, Y exposure alleviated the adverse effects of Ni stress to convergent degrees because Y positively converts putrescine into spermidine and spermine, inhibits oxidative stress, increases the total chlorophyll content, and maximum/potential quantum efficiency of photosystem II. We concluded that low-dose Y can positively regulate polyamine transformation, inhibit oxidative stress, stimulate photosynthesis, and finally promote the resist ability of P. crispus to nickel stress. Thus, REEs have potential to be applied in regulating submerged plant tolerance to aquatic heavy-metal pollution.
Show more [+] Less [-]A multivariate examination of the timing and accumulation of potentially toxic elements at Las Conchas bog (NW Spain)
2019
Gallego, José L.R. | Ortiz, José E. | Sánchez-Palencia, Yolanda | Baragaño, Diego | Borrego, Ángeles G. | Torres, Trinidad
The inorganic content of the well-preserved 3.2-m record of Las Conchas bog (NW Spain), covering 8000 cal yr BP., was analysed. To study natural vs. human contributions, we applied an innovative approach, namely the sequential study of multivariate statistics (factor analysis followed by clustering of the factor score matrix) and enrichment factors (EFs). The increasing weight of potentially toxic elements (PTEs) such as the geochemical association of Zn, Pb and Cd (EFs higher than 10, 20 and 40 in the last two centuries) was revealed, and corroborated by the contrast between the contents of anthropogenic Pb and total Rare Earth Elements (a suitable proxy for natural geogenic supplies). Furthermore, elements such as Hg, Tl and As also showed enrichment in the most recent samples of the study core. Some of them are commonly associated with global atmospheric transport; however, in this case, their increasing contents could also be explained by nearby industrial and mining activities.In summary, severe pollution was observed in the uppermost part of the record, thereby pointing to an important environmental concern. Given that local and regional sources of PTEs, such as mining and heavy industry, especially Zn smelting, were probably the main historical causes of this contamination and that some of these industries are still active, we consider that our findings deserve further attention.
Show more [+] Less [-]Indoor air pollution affects hypertension risk in rural women in Northern China by interfering with the uptake of metal elements: A preliminary cross-sectional study
2018
Wang, Bin | Zhu, Yibing | Pang, Yiming | Xie, Jing | Hao, Yongxiu | Yan, Huina | Li, Zhiwen | Ye, Rongwei
Coal combustion and passive smoking are two important contributors to indoor air pollution (IAP) in rural areas of northern China. Although the association between outdoor air pollutants and hypertension risk had been widely reported, fewer studies have examined the relationship between IAP and hypertension risk. This study evaluated the association between IAP and hypertension risk in housewives in rural areas of northern China and the potential mediation pathway of metal elements. Our cross-sectional study, conducted in Shanxi Province, China, enrolled 367 subjects without taking anti-hypertensive drugs, including 142 subjects with hypertension (case group) and 225 subjects without hypertension (control group). We collected information on energy use characteristics and lifestyle using questionnaires. An IAP exposure index was developed to indicate the population exposure to coal combustion and passive smoking. Scalp hair samples were collected from the housewives and various trace and major metal elements were measured. Our results revealed that the IAP index was positively correlated with systolic and diastolic blood pressure. A significant association between the IAP index and hypertension risk was found both without [odds ratio (95% confidence interval, CI) = 2.08 (1.30–3.31)] and with [OR (95% CI) = 2.52 (1.46–4.36)] adjustment for confounders. We also observed that the IAP index was positively correlated with the arsenic, lead, and rare earth element levels in hair samples, and negatively correlated with the levels of some other trace elements (i.e., chromium, cobalt, nickel, and tin) and alkaline earth elements (i.e., calcium, magnesium, and barium) with an overall p value of <0.01. We concluded that IAP may contribute to the development of hypertension in rural housewives in northern China, possibly by interfering with the uptake of metal elements.
Show more [+] Less [-]Rare earth elements and hypertension risk among housewives: A pilot study in Shanxi Province, China
2017
Wang, Bin | Yan, Lailai | Huo, Wenhua | Lu, Qun | Cheng, Zixi | Zhang, Jingxu | Li, Zhiwen
Studies have shown that residents living near rare earth mining areas have high concentrations of rare earth elements (REEs) in their hair. However, the adverse effects of REEs on human health have rarely been the focus of epidemiological studies. The goal of this study was to evaluate the relationship between REEs in hair and the risk of hypertension in housewives. We recruited 398 housewives in Shanxi Province, China, consisting of 163 women with hypertension (cases) and 235 healthy women without hypertension (controls). We analyzed 15 REEs (lanthanum (La), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), Yttrium (Y), cerium (Ce), praseodymium (Pr), and neodymium (Nd)) and calcium (Ca) accumulated in housewives hair over a period of two years. The results revealed that, with the exception of Eu, concentrations of the REEs in hair were higher in the cases than in the controls. The univariate odds ratios (ORs) of the 14 REEs were >1, and four of the REEs (Dy, Tm, Yb, and Y) also had adjusted ORs > 1. The increasing dose-response trends of the four REEs further indicated the potential for increased hypertension risk. Moreover, the REEs were negatively correlated with Ca content in hair. These results might suggest an antagonistic effect of REEs on Ca in the human body. It was concluded that high intake of REEs might increase the risk of hypertension among housewives.
Show more [+] Less [-]Abnormal pinocytosis and valence-variable behaviors of cerium suggested a cellular mechanism for plant yield reduction induced by environmental cerium
2017
Wang, Lihong | He, Jingfang | Yang, Qing | Lv, Xiaofen | Li, Jigang | Chen, David D.Y. | Ding, Xiaolan | Huang, Xiaohua | Zhou, Qing
The environmental safety of cerium (Ce) applications in many fields has been debated for almost a century because the cellular effects of environmental Ce on living organisms remain largely unclear. Here, using new, interdisciplinary methods, we surprisingly found that after Ce(III) treatment, Ce(III) was first recognized and anchored on the plasma membrane in leaf cells. Moreover, some trivalent Ce(III) was oxidized to tetravalent Ce(IV) in this organelle, which activated pinocytosis. Subsequently, more anchoring sites and stronger valence-variable behavior on the plasma membrane caused stronger pinocytosis to transport Ce(III and IV) into the leaf cells. Interestingly, a great deal of Ce was bound on the pinocytotic vesicle membrane; only a small amount of Ce was enclosed in the pinocytotic vesicles. Some pinocytic vesicles in the cytoplasm were deformed and broken. Upon breaking, pinocytic vesicles released Ce into the cytoplasm, and then these Ce particles self-assembled into nanospheres. The aforementioned special behaviors of Ce decreased the fluidity of the plasma membrane, inhibited the cellular growth of leaves, and finally, decreased plant yield. In summary, our findings directly show the special cellular behavior of Ce in plant cells, which may be the cellular basis of plant yield reduction induced by environmental Ce.
Show more [+] Less [-]Anomalous concentrations of rare earth elements in the moss–soil system from south-central Poland
2013
Dołęgowska, Sabina | Migaszewski, Zdzisław M.
Fourteen rare earth elements were determined in mosses (Pleurozium schreberi) and soils (subhorizon-Ofh and -Ol, mixed horizon-AE and AEB) from south-central Poland. The results were normalized against North American Shale Composite (NASC) and Post-Archean Australian Shales (PAAS). The distribution of REEs in the moss−soil system differed considerably, but all the samples showed the average percent of increase of medium rare earth elements. The shale-normalized concentration ratios calculated for selected elements (LaN/YbN, GdN/YbN, LaN/SmN) were in the range of 1.22–2.43, 1.74–3.10 and 0.86–1.09. Both subhorizon-Ofh (-Ol) and horizon-AE (-AEB) showed a weak enrichment of Gd. The shale-normalized patterns of soils showed a somewhat negative Eu anomaly in the horizon-AE (-AEB), and a slightly negative Ce anomaly in the subhorizon-Ofh (-Ol). A strongly positive Eu anomaly and a somewhat negative Nd anomaly were found in the moss samples.
Show more [+] Less [-]Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport
2009
Li, Yizhong | Kang, Shichang | Zhang, Qianggong
The Tibetan Plateau (TP) is an ideal place for monitoring the atmospheric environment of low to mid latitudes. In total 54 soil samples from the western TP were analyzed for major and trace elements. Results indicate that concentrations of some typical "pollution" elements (such as As) are naturally high here, which may cause incorrect evaluation for the source region of these elements, especially when upper continental crust values are used to calculate enrichment factors. Because only particles <20 μm are transportable as long distances, elemental concentrations of this fraction of the TP soils are more reliable for the future aerosol related studies over the TP. In addition, REE compositions of the TP soils are unusual, highly characteristic and can be used as an effective index for identifying dust aerosol from the TP. High concentrations of some elements of the Tibetan soils can cause incorrect evaluation for the source region of these elements during aerosol related study.
Show more [+] Less [-]Distribution, source and behavior of rare earth elements in surface water and sediments in a subtropical freshwater lake influenced by human activities
2022
Jiang, Chunlu | Li, Yanhao | Li, Chang | Zheng, Lanlan | Zheng, Liugen
As tracers, rare earth elements (REEs) can reflect the influence of human activities on the environmental changes in aquatic systems. To reveal the geochemical behavior of REEs in a water–sediment system influenced by human activities, the contents of REEs in the surface water and sediment in the Chaohu Lake Basin were measured by inductively coupled plasma mass spectrometry (ICP–MS). The results show that the ΣREE contents in the surface water are 0.10–0.850 μg L⁻¹, the ΣREE contents in the sediments are 71.14–210.01 μg g⁻¹, and the average contents are 0.24 μg L⁻¹ and 126.72 μg g⁻¹, respectively. Almost all water and sediment samples have obvious light REE (LREE) enrichment, which is the result of the input of LREE-rich substances released by natural processes and human activities (industrial and agricultural production). Under the alkaline water quality conditions of Chaohu Lake, REEs (especially LREEs) are easily removed from water by adsorption/coprecipitation reactions with suspended colloidal particles, which leads to the enrichment of LREEs in sediments. The Ce anomaly of the water–sediment system is related to the oxidation environment, while the Eu anomaly is related to the plagioclase crystallization. Significant Gd anomalies was observed in the downstream of rivers flowing through urban areas, which was related to the anthropogenic Gd wastewater discharged by hospitals. The ∑REE–δEu and provenance index (PI) discrimination results are consistent, indicating that the sediments in Chaohu Lake mainly come from rivers flowing through the southwest farmland. Furthermore, the spatial distribution of REEs shows that these tributaries are significantly affected by agricultural activities. The distribution and accumulation of REEs in Chaohu Lake are the result of the interaction of natural and human processes. The results can provide a scientific reference for the distribution and environmental behavior of REEs in aquatic environments disturbed by human beings.
Show more [+] Less [-]