Refine search
Results 1-10 of 298
Correlation Study of Meteorological Parameters and Criteria Air Pollutants in Jiangsu Province, China
2022
Johnson, Anbu Clemensis
Air pollution is a global issue and meteorological factors play an important role in its transportationand regional concentration. The current research is aimed to analyse the variations in meteorologicalparameters in a seasonal and geographical location context in the Jiangsu province of China, and itscorrelation with the six criteria air pollutants, and air quality index (AQI). The present analysis willsupplement the limited understanding on the relation between the regions prevalent climatic conditionsand atmospheric pollution. The meteorological data analysis showed Suzhou city located in thesouthern region of the Jiangsu province with high average temperature, relative humidity, and rainfall.Maximum values of temperature, UV index, sunshine, relative humidity, and rainfall occurred duringsummer, while air pressure in winter. High values of all meteorological parameters occurred in thenorthern and southern region of the province. The data correlation study revealed AQI to havenegative correlation with most meteorological parameters, and positive correlation with air pressure inall cities.
Show more [+] Less [-]Contribution of liquid water content enhancing aqueous phase reaction forming ambient particulate nitrosamines
2022
Choi, Na Rae | Park, Seungshik | Ju, Seoryeong | Lim, Yong Bin | Lee, Ji Yi | Kim, Eunhye | Kim, Soontae | Shin, Hye Jung | Kim, Yong Pyo
Contribution of liquid water content (LWC) to the levels of the carcinogenic particulate nitro(so) compounds and the chemistry affecting LWC were investigated based on the observation of seven nitrosamines and two nitramines in rural (Seosan) and urban (Seoul) area in South Korea during October 2019 and a model simulation. The concentrations of both the total nitrosamines and nitramines were higher in Seosan (12.48 ± 16.12 ng/m³ and 0.65 ± 0.71 ng/m³, respectively) than Seoul (7.41 ± 13.59 ng/m³ and 0.24 ± 0.15 ng/m³, respectively). The estimated LWC using a thermodynamic model in Seosan (12.92 ± 9.77 μg/m³) was higher than that in Seoul (6.20 ± 5.35 μg/m³) mainly due to higher relative humidity (75 ± 9% (Seosan); 62 ± 10% (Seoul)) and higher concentrations of free ammonia (0.13 ± 0.09 μmol/m³ (Seosan); 0.08 ± 0.01 μmol/m³ (Seoul)) and total nitric acid (0.09 ± 0.07 μmol/m³ (Seosan); 0.04 ± 0.02 μmol/m³ (Seoul)) in Seosan while neither fog nor rain occurred during the sampling period. The relatively high concentrations of the particulate nitrosamines (>30 ng/m³) only observed probably due to the higher LWC (>10 μg/m³) in Seosan. It implies that aqueous phase reactions involving NO₂ and/or uptake from the gas phase enhanced by LWC could be promoted in Seosan. Strong correlation between the concentrations of nitrosodi-methylamine (NDMA), an example of nitrosamines, simulated by a kinetic box model including the aqueous phase reactions and the measured concentration of NDMA in Seosan (R = 0.77; 0.37 (Seoul)) indicates that the aqueous phase reactions dominantly enhanced the NDMA concentrations in Seosan. On the other hand, it is estimated that the formation of nitrosamines by aqueous phase reaction was not significant due to the relatively lower LWC in Seoul compared to that in Seosan. Furthermore, it is presumed that nitramines are mostly emitted from the primary emission sources. This study implies that the concentration of the particulate nitrosamines can be promoted by aqueous phase reaction enhanced by LWC.
Show more [+] Less [-]Effect of zinc and iron oxide nanoparticles on plant physiology, seed quality and microbial community structure in a rice-soil-microbial ecosystem
2022
Afzal, Shadma | Singh, Nand K.
In this study, we assessed the impact of zinc oxide (ZnO) and iron oxide (FeO) (<36 nm) nanoparticles (NPs) as well as their sulphate salt (bulk) counterpart (0, 25, 100 mg/kg) on rice growth and seed quality as well as the microbial community in the rhizosphere environment of rice. During the rice growing season 2021–22, all experiments were conducted in a greenhouse (temperature: day 30 °C; night 20 °C; relative humidity: 70%; light period: 16 h/8 h, day/night) in rice field soil. Results showed that low concentrations of FeO and ZnO NPs (25 mg/kg) promoted rice growth (height (29%, 16%), pigment content (2%, 3%)) and grain quality parameters such as grains per spike (8%, 9%), dry weight of grains (12%, 14%) respectively. As compared to the control group, the Zn (2%) and Fe (5%) accumulations at their respective low concentrations of NP treatments showed stimulation. Interestingly, our results showed that at low concentration of both the NPs the soil microbes had more diversity and richness than those in the bulk treated and control soil group. Although a number of phyla were affected by the presence of NPs, the strongest effects were observed for change in the abundance of the three phyla for Proteobacteria, Actinobacteria, and Planctomycetes. The rhizosphere environment was notably enriched with potential streptomycin producers, carbon and nitrogen fixers, and lignin degraders with regard to functional groups of microorganisms. However, microbial communities mainly responsible for chitin degradation, ammonia oxidation, and nitrite reduction were found to be decreased. The results from this study highlight significant changes in several plant-based endpoints, as well as the rhizosphere soil microorganisms. It further adds information to our understanding of the nanoscale-specific impacts of important micronutrient oxides on both rice and its associated soil microbiome.
Show more [+] Less [-]Alkylation modified pistachio shell-based biochar to promote the adsorption of VOCs in high humidity environment
2022
Cheng, Tangying | Li, Jinjin | Ma, Xiuwei | Zhou, Lei | Wu, Hao | Yang, Linjun
The objective of this work was to evaluate the adsorption capacity of alkylated modified porous biochar prepared by esterification and etherification (PSAC-2) for low concentrate volatile organic compounds (VOCs, toluene and ethyl acetate) in high humidity environment by experiments and theoretical calculations. Results showed that PSAC-2 has a large specific surface area and weak surface polarity, at 80% relative humidity, its capacities for toluene and ethyl acetate adsorption could be maintained at 92% and 87% of the initial capacities (169.9 mg/g and 96.77 mg/g). The adsorption behaviors of toluene, ethyl acetate, and water vapor were studied by adsorption isotherms, and isosteric heat was obtained. The desorption activation energy was obtained by temperature programmed desorption experiment. The outcomes manifested that the PSAC-2 can achieve strong adsorption performance for weakly polar molecules. Through density functional theory (DFT) simulations, owing to the interaction of hydrogen bonds, oxygen-containing groups became a significant factor influencing the adsorption of VOCs in humid environments. These results could provide an important reference for VOCs control in a high humidity environment.
Show more [+] Less [-]The relationship between particulate matter and lung function of children: A systematic review and meta-analysis
2022
Zhang, Wenjing | Ma, Runmei | Wang, Yanwen | Jiang, Ning | Zhang, Yi | Li, Tiantian
There have been many studies on the relationship between fine particulate matter (PM₂.₅) and lung function. However, the impact of short-term or long-term PM₂.₅ exposures on lung function in children is still inconsistent globally, and the reasons for the inconsistency of the research results are not clear. Therefore, we searched the PubMed, Embase and Web of Science databases up to May 2022, and a total of 653 studies about PM₂.₅ exposures on children's lung function were identified. Random effects meta-analysis was used to estimate the combined effects of the 25 articles included. PM₂.₅ concentrations in short-term exposure studies mainly come from individual and site monitoring. And for every 10 μg/m³ increase, forced vital capacity (FVC), forced expiratory volume in the first second (FEV₁) and peak expiratory flow (PEF) decreased by 21.39 ml (95% CI: 13.87, 28.92), 25.66 ml (95% CI: 14.85, 36.47) and 1.76 L/min (95% CI: 1.04, 2.49), respectively. The effect of PM₂.₅ on lung function has a lag effect. For every 10 μg/m³ increase in the 1-day moving average PM₂.₅ concentration, FEV₁, FVC and PEF decreased by 14.81 ml, 15.40 ml and 1.18 L/min, respectively. PM₂.₅ concentrations in long-term exposure studies mainly obtained via ground monitoring stations. And for every 10 μg/m³ increase, FEV₁, FVC and PEF decreased by 61.00 ml (95% CI: 25.80, 96.21), 54.47 ml (95% CI: 7.29, 101.64) and 10.02 L/min (95% CI: 7.07, 12.98), respectively. The sex, body mass index (BMI), relative humidity (RH), temperature (Temp) and the average PM₂.₅ exposure level modify the relationship between short-term PM₂.₅ exposure and lung function. Our study provides further scientific evidence for the deleterious effects of PM₂.₅ exposures on children's lung function, suggesting that exposure to PM₂.₅ is detrimental to children's respiratory health. Appropriate protective measures should be taken to reduce the adverse impact of air pollution on children's health.
Show more [+] Less [-]Response surface model based emission source contribution and meteorological pattern analysis in ozone polluted days
2022
Chen, Ying | Zhu, Yun | Lin, Che-Jen | Arunachalam, Saravanan | Wang, Shuxiao | Xing, Jia | Chen, Duohong | Fan, Shaojia | Fang, Tingting | Jiang, Anqi
Urban and regional ozone (O₃) pollution is a public health concern and causes damage to ecosystems. Due to the diverse emission sources of O₃ precursors and the complex interactions of air dispersion and chemistry, identifying the contributing sources of O₃ pollution requires integrated analysis to guide emission reduction plans. In this study, the meteorological characteristics leading to O₃ polluted days (in which the maximum daily 8–h average O₃ concentration is higher than the China Class II National O₃ Standard (160 μg/m³)) in Guangzhou (GZ, China) were analyzed based on data from 2019. The O₃ formation regimes and source apportionments under various prevailing wind directions were evaluated using a Response Surface Modeling (RSM) approach. The results showed that O₃ polluted days in 2019 could be classified into four types of synoptic patterns (i.e., cyclone, anticyclone, trough, and high pressure approaching to sea) and were strongly correlated with high ambient temperature, low relative humidity, low wind speed, variable prevailing wind directions. Additionally, the cyclone pattern strongly promoted O₃ formation due to its peripheral subsidence. The O₃ formation was nitrogen oxides (NOₓ)-limited under the northerly wind, while volatile organic compounds (VOC)-limited under other prevailing wind directions. Anthropogenic emissions contributed largely to the O₃ formation (54–78%) under the westerly, southwesterly, easterly, southeasterly, or southerly wind, but only moderately (35–47%) under the northerly or northeasterly wind. Furthermore, as for anthropogenic contributions, local emission contributions were the largest (39–60%) regardless of prevailing wind directions, especially the local NOₓ contributions (19–43%); the dominant upwind regional emissions contributed 12–46% (e.g., contributions from Dongguan were 12–20% under the southeasterly wind). The emission control strategies for O₃ polluted days should focus on local emission sources in conjunction with the emission reduction of upwind regional sources.
Show more [+] Less [-]Assessment and statistical modelling of airborne microorganisms in Madrid
2021
Cordero, José María | Núñez, Andrés | García, Ana M. | Borge, Rafael
The limited evidence available suggests that the interaction between chemical pollutants and biological particles may intensify respiratory diseases caused by air pollution in urban areas. Unlike air pollutants, which are routinely measured, records of biotic component are scarce. While pollen concentrations are daily surveyed in most cities, data related to airborne bacteria or fungi are not usually available. This work presents the first effort to understand atmospheric pollution integrating both biotic and abiotic agents, trying to identify relationships among the Proteobacteria, Actinobacteria and Ascomycota phyla with palynological, meteorological and air quality variables using all biological historical records available in the Madrid Greater Region. The tools employed involve statistical hypothesis contrast tests such as Kruskal-Wallis and machine learning algorithms. A cluster analysis was performed to analyse which abiotic variables were able to separate the biotic variables into groups. Significant relationships were found for temperature and relative humidity. In addition, the relative abundance of the biological phyla studied was affected by PM₁₀ and O₃ ambient concentration. Preliminary Generalized Additive Models (GAMs) to predict the biotic relative abundances based on these atmospheric variables were developed. The results (r = 0.70) were acceptable taking into account the scarcity of the available data. These models can be used as an indication of the biotic composition when no measurements are available. They are also a good starting point to continue working in the development of more accurate models and to investigate causal relationships.
Show more [+] Less [-]Geo-climatic factors and prevalence of chronic toxoplasmosis in pregnant women: A meta-analysis and meta-regression
2021
Rostami, Ali | Riahi, Seyed Mohammad | Esfandyari, Sahar | Habibpour, Haniyeh | Mollalo, Abolfazl | Mirzapour, Aliyar | Behniafar, Hamed | MohammadiMoghadam, Somayeh | Azizi Kyvanani, Nastaran | Aghaei, Shima | Bazrafshan, Negar | Ghazvini, Sobhan
In this study, we evaluated the effects of geo-climatic parameters and other potential risk factors on the prevalence of chronic toxoplasmosis (CT) in pregnant women. We searched PubMed/MEDLINE, Web of Science, EMBASE, Scopus, and SciELO databases for seroepidemiological studies published between January 1988, and February 2021. We performed meta-analysis and meta-regression by using a random effect model to synthesize data. A total of 360 eligible datasets, including 1,289,605 pregnant women from 94 countries, were included in this study. The highest and lowest prevalence rates were estimated for latitudes of 0–10° (49.4%) and ≥50° (26.8%); and for the longitude of 80–90° (44.2%) and 110–120° (7.8%), respectively. Concerning climatic parameters, the highest and lowest prevalence rates were estimated in regions with the mean relative humidities of >80% (46.6%) and <40% (27.0); annual precipitation between 1000 and 1500 mm (39.2%) and 250–500 mm (26.8%); and mean annual temperature of 20–30 °C (36.5%), and <7 °C (24.9%), respectively. Meta-regression analyses indicated significant increasing trends in prevalence of CT in pregnant women with decrease in geographical latitude (coefficient, = −0.0035), and geographical longitudes (C = −0.0017). While it was positively associated (P < 0.01) with the mean environmental temperature (C = 0.0047), annual precipitation (C = 0.000064), and mean relative humidity (C = 0.002). Our results highlighted various effects of environmental parameters on the prevalence of CT. Therefore, different regions in the world may benefit from different types of interventions, and thus, novel preventive measures in a region should be developed according to local climate, agricultural activities and people culture.
Show more [+] Less [-]Size−resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components
2021
Tian, Yingze | Harrison, Roy M. | Feng, Yinchang | Shi, Zongbo | Liang, Yongli | Li, Yixuan | Xue, Qianqian | Xu, Jingsha
This research apportioned size-resolved particulate matter (PM) contributions in a megacity in northern China based on a full year of measurements of both inorganic and organic markers. Ions, elements, carbon fractions, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), hopanes and steranes in 9 p.m. size fractions were analyzed. High molecular weight PAHs concentrated in fine PM, while most other organic compounds showed two peaks. Both two-way and three-way receptor models were used for source apportionment of PM in different size ranges. The three-way receptor model gave a clearer separation of factors than the two-way model, because it uses a combination of chemical composition and size distributions, so that factors with similar composition but distinct size distributions (like more mature and less mature coal combustion) can be resolved. The three-way model resolved six primary and three secondary factors. Gasoline vehicles and coal and biomass combustion, nitrate and high relative humidity related secondary aerosol, and resuspended dust and diesel vehicles (exhaust and non-exhaust) are the top two contributors to pseudo-ultrafine (<0.43 μm), fine (0.43–2.1 μm) and coarse mode (>2.1 μm) PM, respectively. Mass concentration of PM from coal and biomass combustion, industrial emissions, and diesel vehicle sources showed a bimodal size distribution, but gasoline vehicles and resuspended dust exhibited a peak in the fine and coarse mode, separately. Mass concentration of sulphate, nitrate and secondary organic aerosol exhibited a bimodal distribution and were correlated with temperature, indicating strong photochemical processing and repartitioning. High relative humidity related secondary aerosol was strongly associated with size shifts of PM, NO₃⁻ and SO₄²⁻ from the usual 0.43–0.65 μm to 1.1–2.1 μm. Our results demonstrated the dominance of primary combustion sources in the <0.43 μm particle mass, in contrast to that of secondary aerosol in fine particle mass, and dust in coarse particle mass in the Northern China megacity.
Show more [+] Less [-]Spatiotemporal variations and driving factors of dust storm events in northern China based on high-temporal-resolution analysis of meteorological data (1960–2007)
2020
Xu, Chuanqi | Guan, Qingyu | Lin, Jinkuo | Luo, Haiping | Yang, Liqin | Tan, Zhe | Wang, Qingzheng | Wang, Ning | Tian, Jing
Northern China is a significant source of dust source in Central Asia. Thus, high-resolution analysis of dust storms and comparison of dust sources in different regions of northern China are important to clarify the formation mechanism of East Asian dust storms and predict or even prevent such storms. Here, we analyzed spatiotemporal trends in dust storms that occurred in three main dust source regions during 1960–2007: Taklimakan Desert (western region [WR]), Badain Jaran and Tengger Deserts (middle region [MR]), and Otindag Sandy Land (eastern region [ER]). We analyzed daily dust storm frequency (DSF) at the 10-day scale (first [FTDM], middle [MTDM], and last [LTDM] 10 days of a month), and investigated the association of dust storm occurrences with meteorological factors. The 10-day DSF was greatest in the FTDM (accounting for 77.14% of monthly occurrences) in the WR, MTDM (45.85%) in the MR, and LTDM (72.12%) in the ER, showing a clear trend of movement from the WR to the ER. Temporal analysis of DSF revealed trend changes over time at annual and 10-day scales, with mutation points at 1985 and 2000. We applied single-factor and multiple-factor analyses to explore the driving mechanisms of DSF at the 10-day scale. Among single factors, a low wind-speed threshold, high solar radiation, and high evaporation were correlated with a high DSF, effectively explaining the variations in DSF at the 10-day scale; however, temperature, relative humidity, and precipitation poorly explained variations in DSF. Similarly, multiple-factor analysis using a classification and regression tree revealed that maximum wind speed was a major influencing factor of dust storm occurrence at the 10-day scale, followed by relative humidity, evaporation, and solar radiation; temperature and precipitation had weak influences. These findings help clarify the mechanisms of dust storm occurrence in East Asia.
Show more [+] Less [-]