Refine search
Results 1-10 of 25
Succession of microbial functional communities in response to a pilot-scale ethanol-blended fuel release throughout the plume life cycle
2015
Ma, Jie | Deng, Ye | Yuan, Tong | Zhou, Jizhong | Alvarez, Pedro J.J.
GeoChip, a comprehensive gene microarray, was used to examine changes in microbial functional gene structure throughout the 4-year life cycle of a pilot-scale ethanol blend plume, including 2-year continuous released followed by plume disappearance after source removal. Canonical correlation analysis (CCA) and Mantel tests showed that dissolved O2 (which was depleted within 5 days of initiating the release and rebounded 194 days after source removal) was the most influential environmental factor on community structure. Initially, the abundance of anaerobic BTEX degradation genes increased significantly while that of aerobic BTEX degradation genes decreased. Gene abundance for N fixation, nitrification, P utilization, sulfate reduction and S oxidation also increased, potentially changing associated biogeochemical cycle dynamics. After plume disappearance, most genes returned to pre-release abundance levels, but the final functional structure significantly differed from pre-release conditions. Overall, observed successions of functional structure reflected adaptive responses that were conducive to biodegradation of ethanol-blend releases.
Show more [+] Less [-]River ecosystem resilience risk index: A tool to quantitatively characterize resilience and critical transitions in human-impacted large rivers
2021
Jaiswal, Deepa | Pandey, Jitendra
Riverine ecosystems can have tipping points at which the system shifts abruptly to alternate states, although quantitative characterization is extremely difficult. Here we show, through critical analysis of two different reach scale (25 m and 50 m) studies conducted downstream of two point sources, two tributaries (main stem and confluences) and a 630 km segment of the Ganga River, that human-driven benthic hypoxia/anoxia generates positive feedbacks that propels the system towards a contrasting state. Considering three positive feedbacks-denitrification, sediment-P- and metal-release as level determinants and extracellular enzymes (β-D-glucosidase, protease, alkaline phosphatase and FDAase) as response determinants, we constructed a ‘river ecosystem resilience risk index (RERRI)’ to quantitatively characterize tipping points in large rivers. The dynamic fit intersect models indicated that the RERRI<4 represents a normal state, 4–18 a transition where recovery is possible, and >18 an overstepped condition where recovery is not possible. The resilience risk index, developed for the first time for a lotic ecosystem, can be a useful tool for understanding the tipping points and for adaptive and transformative management of large rivers.
Show more [+] Less [-]Seagrass ecosystems of the Pacific Island Countries and Territories: A global bright spot
2021
Mckenzie, Len J. | Yoshida, Rudi L. | Aini, John W. | Andréfouet, Serge | Colin, Patrick L. | Cullen-unsworth, Leanne C. | Hughes, Alec T. | Payri, Claude E. | Rota, Manibua | Shaw, Christina | Skelton, Posa A. | Tsuda, Roy T. | Vuki, Veikila C. | Unsworth, Richard K.f.
Seagrass ecosystems exist throughout Pacific Island Countries and Territories (PICTs). Despite this area covering nearly 8% of the global ocean, information on seagrass distribution, biogeography, and status remains largely absent from the scientific literature. We confirm 16 seagrass species occur across 17 of the 22 PICTs with the highest number in Melanesia, followed by Micronesia and Polynesia respectively. The greatest diversity of seagrass occurs in Papua New Guinea (13 species), and attenuates eastward across the Pacific to two species in French Polynesia. We conservatively estimate seagrass extent to be 1446.2 km2, with the greatest extent (84%) in Melanesia. We find seagrass condition in 65% of PICTs increasing or displaying no discernible trend since records began. Marine conservation across the region overwhelmingly focuses on coral reefs, with seagrass ecosystems marginalised in conservation legislation and policy. Traditional knowledge is playing a greater role in managing local seagrass resources and these approaches are having greater success than contemporary conservation approaches. In a world where the future of seagrass ecosystems is looking progressively dire, the Pacific Islands appears as a global bright spot, where pressures remain relatively low and seagrass more resilient.
Show more [+] Less [-]Over a decade monitoring Fiji's seagrass condition demonstrates resilience to anthropogenic pressures and extreme climate events
2020
McKenzie, Len J. | Yoshida, Rudi L.
Seagrass are an important marine ecosystem of the Fiji Islands. We confirm six seagrass species from the archipelago and defined five broad categories of seagrass habitat. We report, with high confidence, seagrass meadows covering 59.19 km² of Fiji's shallow water habitats from literature and this study. Long-term monitoring of seagrass abundance, species composition, and seed banks at eight sentinel sites, found no long-term trends. Examination of key attributes that affect seagrass resilience identified meadows as predominately enduring and dominated by opportunistic species which had moderate physiological resistance, and high recovery capacity. We examined threats to Fiji's seagrass meadows from extreme climatic events and anthropogenic activities using a suite of indicators, identifying water quality as a major pressure. Based on these findings, we assessed existing protections in Fiji afforded to seagrass and their services. This understanding will help to better manage for seagrass resilience and focus future seagrass research in Fiji.
Show more [+] Less [-]Ecosystem features determine seagrass community response to sea otter foraging
2018
Hessing-Lewis, Margot | Rechsteiner, Erin U. | Hughes, Brent B. | Tim Tinker, M. | Monteith, Zachary L. | Olson, Angeleen M. | Henderson, Matthew Morgan | Watson, Jane C.
Comparing sea otter recovery in California (CA) and British Columbia (BC) reveals key ecosystem properties that shape top-down effects in seagrass communities. We review potential ecosystem drivers of sea otter foraging in CA and BC seagrass beds, including the role of coastline complexity and environmental stress on sea otter effects. In BC, we find greater species richness across seagrass trophic assemblages. Furthermore, Cancer spp. crabs, an important link in the seagrass trophic cascade observed in CA, are less common. Additionally, the more recent reintroduction of sea otters, more complex coastline, and reduced environmental stress in BC seagrass habitats supports the hypotheses that sea otter foraging pressure is currently reduced there. In order to manage the ecosystem features that lead to regional differences in top predator effects in seagrass communities, we review our findings, their spatial and temporal constraints, and present a social-ecological framework for future research.
Show more [+] Less [-]Boat anchoring pressure on coastal seabed: Quantification and bias estimation using AIS data
2017
Deter, Julie | Lozupone, Xavier | Inacio, Adrien | Boissery, Pierre | Holon, Florian
Global shipping is economically important, but has many adverse environmental effects. Anchoring contributes greatly to this adverse impact, as it is responsible for mechanical disturbance of highly sensitive marine habitats. Recovery of these ecosystems is limited by slow regrowth. Anchoring pressure on coastal seabed habitats was estimated using AIS (Automatic Identification System) data along 1800km of Mediterranean coastline between 2010 and 2015. A comparison with field observations showed that these results were most consistent for large boats (>50m). An analysis of AIS data coupled with a seabed map showed that around 30% of the habitats between 0 and −80m exhibited anchoring pressure. Posidonia oceanica seagrass beds were the most impacted habitat in terms of duration. This methodology efficiently estimates spatial and temporal anchoring pressure principally due to large boats and should interest managers of marine protected areas as much as coastline managers.
Show more [+] Less [-]Abundance and composition of juvenile corals reveals divergent trajectories for coral assemblages across the United Arab Emirates
2017
Pratchett, Morgan S. | Baird, Andrew H. | Bauman, Andrew G. | Burt, John A.
Marked shifts in the composition of coral assemblages are occurring at many locations, but it is unknown whether these are permanent shifts reinforced by patterns of population replenishment. This study examined the composition of juvenile coral assemblages across the United Arab Emirates (UAE). Densities of juvenile corals varied significantly among locations, but were highest where coral cover was highest. Juvenile coral assemblages within the Persian Gulf were dominated by Porites, while no Acropora were recorded. We expect therefore, continued declines in Acropora abundance, while observed dominance of Porites is likely to persist. In the Oman Sea, Pocillopora was the dominant juvenile coral, with Acropora and Stylophora also recorded. This study shows that taxonomic differences in replenishment are reinforcing temporal shifts in coral composition within the southern Persian Gulf, but not in the Oman Sea. Differences in environmental conditions and disturbance regimes likely explain the divergent responses between regions.
Show more [+] Less [-]The implications of recurrent disturbances within the world's hottest coral reef
2016
Bento, Rita | Hoey, Andrew S. | Bauman, Andrew G. | Feary, David A. | Burt, John A.
Determining how coral ecosystems are structured within extreme environments may provide insights into how coral reefs are impacted by future climate change. Benthic community structure was examined within the Persian Gulf, and adjacent Musandam and northern Oman regions across a 3-year period (2008–2011) in which all regions were exposed to major disturbances. Although there was evidence of temporal switching in coral composition within regions, communities predominantly reflected local environmental conditions and the disturbance history of each region. Gulf reefs showed little change in coral composition, being dominated by stress-tolerant Faviidae and Poritidae across the 3years. In comparison, Musandam and Oman coral communities were comprised of stress-sensitive Acroporidae and Pocilloporidae; Oman communities showed substantial declines in such taxa and increased cover of stress-tolerant communities. Our results suggest that coral communities may persist within an increasingly disturbed future environment, albeit in a much more structurally simple configuration.
Show more [+] Less [-]Strategy for assessing impacts in ephemeral tropical seagrasses
2015
Hovey, Renae K. | Statton, John | Fraser, Matthew W. | Ruiz-Montoya, Leonardo | Zavala-Perez, Andrea | Rees, Max | Stoddart, James | Kendrick, Gary A.
We investigated the phenology and spatial patterns in Halophila decipiens by assessing biomass, reproduction and seed density in ~400 grab samples collected across nine sites (8 to 14m water depth) between June 2011 and December 2012. Phenology correlated with light climate which is governed by the summer monsoon (wet period). During the wet period, sedimentary seed banks prevailed, varying spatially at both broad and fine scales, presenting a source of propagules for re-colonisation following the unfavourable growing conditions of the monsoon. Spatial patterns in H. decipiens biomass following monsoon conditions were highly variable within a landscape that largely comprised potential seagrass habitat. Management strategies for H. decipiens and similar transient species must recognise the high temporal and spatial variability of these populations and be underpinned by a framework that emphasises vulnerability assessments of different life stages instead of relying solely on thresholds for standing stock at fixed reference sites.
Show more [+] Less [-]Seagrass ecosystems of the Pacific Island Countries and Territories: A global bright spot
2021
McKenzie, Len J. | Yoshida, Rudi L. | Aini, John W. | Andréfouet, Serge | Colin, Patrick L. | Cullen-Unsworth, Leanne C. | Hughes, Alec T. | Payri, Claude E. | Rota, Manibua | Shaw, Christina | Skelton, Posa A. | Tsuda, Roy T. | Vuki, Veikila C. | Unsworth, Richard K.F.
Seagrass ecosystems exist throughout Pacific Island Countries and Territories (PICTs). Despite this area covering nearly 8% of the global ocean, information on seagrass distribution, biogeography, and status remains largely absent from the scientific literature. We confirm 16 seagrass species occur across 17 of the 22 PICTs with the highest number in Melanesia, followed by Micronesia and Polynesia respectively. The greatest diversity of seagrass occurs in Papua New Guinea (13 species), and attenuates eastward across the Pacific to two species in French Polynesia. We conservatively estimate seagrass extent to be 1446.2 km², with the greatest extent (84%) in Melanesia. We find seagrass condition in 65% of PICTs increasing or displaying no discernible trend since records began. Marine conservation across the region overwhelmingly focuses on coral reefs, with seagrass ecosystems marginalised in conservation legislation and policy. Traditional knowledge is playing a greater role in managing local seagrass resources and these approaches are having greater success than contemporary conservation approaches. In a world where the future of seagrass ecosystems is looking progressively dire, the Pacific Islands appears as a global bright spot, where pressures remain relatively low and seagrass more resilient.
Show more [+] Less [-]