Refine search
Results 1-10 of 354
Disentangling effects of river inflow and marine diffusion in shaping the planktonic communities in a heavily polluted estuary Full text
2020
Sun, Yi | Li, Hongjun | Yang, Qing | Liu, Yongjian | Fan, Jingfeng | Guo, Hao
Estuarine ecosystems are important in terms of biodiversity processes because there are intense interactions between the river and sea environments. Phytoplankton and zooplankton have been shown to be ecological indicators of the water quality status in estuary ecosystems. Therefore, a comprehensive evaluation of the effects that multiple pressures have on the phytoplankton and zooplankton communities in estuarine ecosystems is essential. In this study, water samples from 29 stations were collected from the Liaohe Estuary over three different seasons, and biotic factors (i.e., phytoplankton and zooplankton) were obtained and compared. The results showed that there were significant temporal and spatial variations in the phytoplankton and zooplankton communities from the Liaohe Estuary. The correlation analyses showed that water temperature was the most important factor regulating the variation in phytoplankton communities, whereas the main driving force for the zooplankton was nutrient concentrations. Large amounts of nutrients entered the estuary in spring and summer due to intensive human activities in the Liaohe River basin. The inflows by the Liaohe River introduced some phytoplankton and zooplankton into the estuary, such as Coscinodicus asteromphalus, Chaetoceros decipiens, and Schmacheria poplesia. The impacts of Liaohe inflows on the estuary region gradually decreased as the distance from the inlet increased and this change was mediated by marine diffusion. The results from this study will improve knowledge about planktonic communities in estuarine ecosystems and provide a theoretical foundation for estuary environmental management.
Show more [+] Less [-]Occurrence and distribution of melamine and its derivatives in surface water, drinking water, precipitation, wastewater, and swimming pool water Full text
2020
Zhu, Hongkai | Kannan, Kurunthachalam
The extensive use of melamine and its three derivatives (i.e., ammeline, ammelide, and cyanuric acid) resulted in their widespread occurrence in the environment. Nevertheless, limited information is available on their distribution in the aquatic environment. In this study, concentrations and profiles of melamine and its derivatives were determined in 223 water samples, comprising river water, lake water, seawater, tap water, bottled water, rain water, wastewater, and swimming pool water, collected from New York State, USA. The sum concentrations of melamine and its derivatives (∑₄MELs) decreased in the following order: swimming pool water (median: 1.5 × 10⁷ ng/L) ≫ wastewater (1240) > precipitation (739) > tap water (512) > river water (370) > lake water (347) > seawater (186) > bottled water (98). Cyanuric acid was the major compound, accounting for 60–100% of ∑₄MELs concentrations in swimming pool water, wastewater, precipitation, tap water, seawater, and bottled water, whereas melamine dominated in river and lake water (54–64% of ∑₄MELs). Significant positive correlations (0.499 < R < 0.703, p < 0.002) were found between the concentrations of melamine and atrazine (a triazine herbicide) in surface waters. The geographic distribution in the concentrations of ∑₄MELs in river, lake, and tap water corresponded with the degree of urbanization, suggesting that human activities contribute to the sources melamine and cyanuric acid in the aquatic environments. A preliminary hazard assessment of melamine and cyanuric acid in waters suggested that their ecological or human health risks were minimal. This is the first study to document the occurrence and spatial distribution of melamine and its derivatives in waters from the United States.
Show more [+] Less [-]Urbanization significantly impacts the connectivity of soil microbes involved in nitrogen dynamics at a watershed scale Full text
2020
Zhang, Yan | Ji, Guodong | Wu, Tong | Qiu, Jiangxiao
As one of the most dominant ecosystems of urban green space, turfgrasses provide a wide range of ecosystem services. However, little is known about the interactions of microbial communities in turfgrass soils and how these interactions respond to expanding development of impervious surfaces during watershed urbanization. In this study, we analyzed bacterial communities and their co-occurrence patterns in turfgrass soils along an urbanization gradient as measured by the proportion of impervious surfaces in Jiulong River watershed in Fujian, China. Results show that the diversity and network size of bacterial communities negatively associated with impervious surfaces. The bacterial communities showed non-random co-occurrence patterns, with more intra-module connections observed for urbanized networks. The co-occurrence network with distinct modules of soil samples with contrasting land cover imperviousness suggested different functional organizations with altered microbial nitrogen processes. Structural equation modelling revealed that watershed impervious surfaces had indirect impacts on microbial connectivity by altering soil properties, including pH, temperature, moisture, C/N and nitrate (NO₃⁻). Moreover, impervious surfaces affected microbial connectivity far more than human population density. Our study highlights the significance of human disturbances in affecting microbial interactions and assemblies in turfgrass ecosystems through impervious surfaces and provides benefits for sustainable urban planning and management at a watershed scale.
Show more [+] Less [-]Emerging and legacy per- and polyfluoroalkyl substances in water, sediment, and air of the Bohai Sea and its surrounding rivers Full text
2020
Zhao, Zhen | Cheng, Xianghui | Hua, Xia | Jiang, Bin | Tian, Chongguo | Tang, Jianhui | Li, Qilu | Sun, Hongwen | Lin, Tian | Liao, Yuhong | Zhang, Gan
Per- and polyfluoroalkyl substances (PFASs) contamination in the Bohai Sea and its surrounding rivers has attracted considerable attention in recent years. However, few studies have been conducted regarding the distribution of PFASs in multiple environmental media and their distributions between the suspended particles and dissolved phases. In this study, surface water, surface sediment, and air samples were collected at the Bohai Sea to investigate the concentration and distribution of 39 targeted PFASs. Moreover, river water samples from 35 river estuaries were collected to estimate PFAS discharge fluxes to the Bohai Sea. The results showed that total ionic compound (Σi-PFASs) concentrations ranged from 19.3 to 967 ng/L (mean 125 ± 152 ng/L) in the water and 0.70–4.13 ng/g dw (1.78 ± 0.76 ng/g) in surface sediment of the Bohai Sea, respectively. In the estuaries, Σi-PFAS concentrations were ranged from 10.5 to 13500 ng/L (882 ± 2410 ng/L). In the air, ΣPFAS (Σi-PFASs + Σn-PFASs) concentrations ranged from 199 to 678 pg/m³ (462 ± 166 pg/m³). Perfluorooctanoic acid (PFOA) was the predominant compound in the seawater, sediment, and river water; in the air, 8:2 fluorotelomer alcohol was predominant. Xiaoqing River discharged the largest Σi-PFAS flux to the Bohai Sea, which was estimated as 12,100 kg/y. Some alternatives, i.e., 6:2 fluorotelomer sulfonate acid (6:2 FTSA), hexafluoropropylene oxide dimer acid (HFPO-DA), and chlorinated 6:2 polyfluorinated ether sulfonic acid (Cl-6:2 PFESA), showed higher levels than or comparable concentrations to those of the C8 legacy PFASs in some sampling sites. The particle-derived distribution coefficient in seawater was higher than that in the river water. Using high resolution mass spectrometry, 29 nontarget emerging PFASs were found in 3 river water and 3 seawater samples. Further studies should be conducted to clarify the sources and ecotoxicological effects of these emerging PFASs in the Bohai Sea area.
Show more [+] Less [-]Occurrence of pharmaceuticals in the Danube and drinking water wells: Efficiency of riverbank filtration Full text
2020
Kondor, Attila Csaba | Jakab, Gergely | Vancsik, Anna | Filep, Tibor | Szeberényi, József | Szabó, Lili | Maász, Gábor | Ferincz, Árpád | Dobosy, Péter | Szalai, Zoltán
Surface waters are becoming increasingly contaminated by pharmaceutically active compounds (PhACs), which is a potential risk factor for drinking water quality owing to incomplete riverbank filtration. This study examined the efficiency of riverbank filtration with regard to 111 PhACs in a highly urbanized section of the river Danube. One hundred seven samples from the Danube were compared to 90 water samples from relevant drinking water abstraction wells (DWAW) during five sampling periods. The presence of 52 PhACs was detected in the Danube, the quantification of 19 agents in this section of the river was without any precedent, and 10 PhACs were present in >80% of the samples. The most frequent PhACs showed higher concentrations in winter than in summer. In the DWAWs, 32 PhACs were quantified. For the majority of PhACs, the bank filtration efficiency was >95%, and not influenced by concentrations measured in the river. For carbamazepine lidocaine, tramadol, and lamotrigine, low (<50%) filtration efficiency was observed; however, no correlations were observed between the concentrations detected in the Danube and in the wells. These frequently occurring PhACs in surface waters have a relatively even distribution, and their sporadic appearance in wells is a function of both space and time, which may be caused by the constantly changing environment and micro-biological parameters, the dynamic operating schedule of abstraction wells, and the resulting sudden changes in flow rates. Due to the changes in the efficiency of riverbank filtration in space and time, predicting the occurrence and concentrations of these four PhACs poses a further challenge to ensuring a safe drinking water supply.
Show more [+] Less [-]Investigating arsenic impact of ACC treated timbers in compost production (A case study in Christchurch, New Zealand) Full text
2020
Safa, Majeed | O’Carroll, Daniel | Mansouri, Nazanin | Robinson, Brett | Curline, Greg
The arsenic concentration is an important issue in compost production. The main inputs of a compost factory, including kerbsides, green wastes, food industry wastes, and river weeds are investigated in this study. Also, this study investigated how treated timbers, ashes, and other contamination can impact arsenic concentration in compost production. The results showed that most treated timbers and all ashes of treated and untreated timbers contained significant amounts of arsenic. These results revealed that the presence of a small amount of treated timber ashes can significantly increase the arsenic concentration in composts. The results of the study show the arsenic concentration in compost increase during cold months, and it dropped during summer, which would be mostly because of high arsenic concentration in ashes of log burners. This study shows ashes of burning timbers can impact arsenic contamination mostly because of using Copper-Chrome-Arsenic wood preservatives (CCA). Also, the lab results show the arsenic level even in ashes of untreated timber is around 96 ppm. The ashes of H3, H4, and H5 treated timbers contain approximately 133,000, 155,000, and 179,000 ppm of arsenic, which one kg of them can increase arsenic concentration around 10 ppm in 13.3, 15.5 and 17.9 tons of dry compost products. The main problem is many people look at ashes and treated timber as organic materials; however, ashes of treated and untreated timbers contained high concentrations of arsenic. Therefore, it was necessary to warn people about the dangers of putting any ashes in organic waste bins.
Show more [+] Less [-]Distribution and ecological risk of substituted and parent polycyclic aromatic hydrocarbons in surface waters of the Bai, Chao, and Chaobai rivers in northern China Full text
2020
Like their parent polycyclic aromatic hydrocarbons (PAHs), substituted polycyclic aromatic hydrocarbons (SPAHs), including methyl PAHs (MPAHs), oxygenated PAHs (OPAHs), and chlorinated PAHs (ClPAHs), exist ubiquitously in urban and agricultural rivers. Although laboratory studies have found the biological toxicities of certain SPAHs to be higher than that of their parent PAHs, the ecological risk of SPAHs in rivers has been largely ignored. Here, we studied the distribution, source and transport of PAHs and SPAHs as well as ecological risks in the Chaobai River System, which experiences a high level of anthropogenic activity. The results show that the concentration of ΣOPAHs (321 ± 651 ng/L) was higher than that of ΣPAHs (158 ± 105 ng/L), ΣMPAHs (28 ± 22 ng/L), and ΣClPAHs (30 ± 12 ng/L). We also found that (S)PAHs in Chaobai River mainly originated from Beiyun River (53%–65%), which receives considerable municipal wastewater treatment plant effluent from Beijing. The major transport pathway of (S)PAHs from Chaobai River was likely for irrigation (83%–86%) and transportation into Yongdingxin River (13%–16%), which finally merged into the Bohai Sea. The mixed chronic risk of (S)PAHs (risk quotient = 45 ± 53) was higher than the mixed acute risk (risk quotient = 1.9 ± 1.4), with all sites facing chronic risk and 90% of sites experiencing acute risk. Although the chronic and acute risks of (S)PAHs to plants, invertebrates, and vertebrates were mainly from PAHs (97.5% to chronic risk and 96.5% to acute), SPAHs still posed a chronic risk to invertebrates and vertebrates (risk quotient > 1). Accordingly, the ecological risk of (S)PAHs in Chaobai River should be taken into consideration for ecosystem protection. The transmission of PAHs and SPAHs from Chaobai River may also pose potential risks to farmland through irrigation, as well as to the Bohai Sea via river water discharge.
Show more [+] Less [-]Spatiotemporal variation of paralytic shellfish toxins in the sea area adjacent to the Changjiang River estuary Full text
2020
Liu, Yang | Dai, Li | Chen, Zhen-Fan | Geng, Hui-Xia | Lin, Zhuo-Ru | Zhao, Yue | Zhou, Zheng-Xi | Kong, Fan-Zhou | Yu, Ren-Cheng | Zhou, Ming-Jiang
The Changjiang (Yangtze River) River estuary (CRE) and its adjacent coastal waters is a notable region for nutrient pollution, which results in severe problems of coastal eutrophication and harmful algal blooms (HABs). The occurrence of HABs, particularly those of dinoflagellate Alexandrium spp. capable of producing paralytic shellfish toxins (PSTs), has an increasing risk of contaminating seafood and poisoning human-beings. The investigation of PSTs, however, is often hampered by the relatively low abundance of Alexandrium spp. present in seawater. In this study, a monitoring strategy of PSTs using net-concentrated phytoplankton from a large volume of seawater was employed to examine spatiotemporal variations of PSTs in the CRE and its adjacent waters every month from February to September in 2015. Toxins in concentrated phytoplankton samples were analyzed using high-performance liquid chromatography coupled with a fluorescence detector (HPLC-FLD). The results showed that PSTs could be detected in phytoplankton samples during the sampling stage in the CRE and its adjacent waters. Toxin content increased gradually from February to May, reached the peak in June, and then decreased rapidly from July to September. The maximum value of PST content was 215 nmol m⁻³ in June. Low-potency toxins N-sulfocarbamoyl toxins 1/2 (C1/2) were the most dominant components of PST in phytoplankton samples from February to June in 2015, while high-potency gonyautoxin 4 (GTX4) became the dominant component from July to September. Toxins were mainly detected from three regions, the sea area north to the CRE, the sea area east to the CRE, and sea area near Zhoushan Island south to the CRE. Based on the results of this study, it can be inferred that the three regions around the CRE in May and June is of high risk for PST contamination and seafood poisoning.
Show more [+] Less [-]Benthic hypoxia in anthropogenically-impacted rivers provides positive feedback enhancing the level of bioavailable metals at sediment-water interface Full text
2020
Jaiswal, Deepa | Pandey, Jitendra
We investigated the effect of hypoxic-anoxic range of dissolved oxygen (DO) on metal release/bioavailability at sediment-water interface (SWI) in the Ganga River. Here, we consider eight sites in the main river stem along 518 km; sixty sites downstream two point sources and two tributary confluences covering 630 km; and an incubation experiment to verify these results. We found higher concentrations of metals and bioavailable fractions at SWI at two locations of main stem and up to 700 m, 1000 m, 400 m and 500 m downstream Assi drain, Wazidpur drain, Ramganga confluence and Varuna confluence respectively where DO at SWI (DOₛw) was <2.0 mgL⁻¹. The incubation experiment did show higher levels of metal- and P-release and bioavailability under anoxic-hypoxic range of DO. The risk assessment code and eutrophication index indicated high to very high risks of contaminated river sediment and water to aquatic environment at sites with hypoxic-anoxic range of DOₛw. Further, the principal component analyses separated metals and bioavailable fractions opposite to FDAase indicating greater risk at these locations. The study, which forms the first report on benthic hypoxia/anoxia-driven metal release, potential bioavailability and risk to the Ganga River ecosystem will help understanding how human-driven perturbations influence geochemical cycling of metals and ecosystem responses in large rivers.
Show more [+] Less [-]Bioreactors for the remediation of hydrocarbon-polluted water of the Bitzal River, a place of environmental emergency due to the death of manatees Full text
2020
María del Refugio, Castañeda-Chávez | Ángel de Jesus, Isidoro-Pio | Fabiola, Lango-Reynoso | Manuel Alejandro, Lizardi-Jiménez
The objectives of this research are: identify the hydrocarbons in water from the Bitzal River, Tabasco; select a carbon source that serves as a representative substrate of the determined compounds; and finally, design an experimental proposal for bioreactors that are capable of consuming compounds formed by complex mixtures and, therefore be effective in the elimination of specific hydrocarbons. We identified 16 compounds that belong to different hydrocarbon fractions. Pentacene (24.3 ± 0.09 mg L⁻¹), n-nonane (2.11 ± 0.96 mg L⁻¹) and benzo [a] pyrene (1.39 ± 0.57 mg L⁻¹) were the compounds with the highest concentrations in water. Two culture media, mineral medium and seawater were used. Diesel and Mayan crude oil were used for each culture medium, with a total of four bioreactors. Diesel represented light- and medium-fraction hydrocarbons, while Mayan crude oil represented the heavy fraction as well as the recalcitrant and polycyclic aromatic hydrocarbons (PAH). The maximum growth of suspended solids for diesel in mineral medium reached 2.95 g L⁻¹, and diesel was completely consumed in 8 days. In seawater, suspended solids for diesel reached 2.70 g L⁻¹, and diesel was consumed in 12 days. For Mayan crude oil in mineral medium, suspended solids increased from 0.8 to 2.41 g L⁻¹, and Mayan crude oil was completely consumed in 12 days. Using seawater, Mayan crude oil also degraded in 12 days, and suspended solids growth reached 2.11 g L⁻¹. Compounds that simulate complex mixtures of hydrocarbons from light to heavy fractions could be degraded, and the use of bioreactors is an alternative method of hydrocarbon pollution remediation in the Bitzal River.
Show more [+] Less [-]