Refine search
Results 1-10 of 129
Status and evaluation of the selected soil nutrients irrigated by unconventional water (Case study: Qom)
2016
Arast, Mina | Zehtabian, Gholamreza | Jafari, Mohammad | Khosravi, Hassan | Jabalbarezi, Bahareh
Population’s exponential growth along with drought has increased water resources limitation, especially in arid and semi-arid area. Therefore, the use of non-conventional water is an important tool for water resource management. If unconventional water has no negative impact on soil properties and water, it can be used for irrigation coupled with desertification projects. So, this paper tries to present the effect of irrigation with municipal wastewater, salt water, brackish water, and combination of salty water and wastewater on some soil properties including nitrogen, phosphorus, and potassium in Qom plain. Soil samples were taken from agricultural land treated by wastewater, saline water, brackish water, combination of salty water, and wastewater and range land as control in five treatments from depths of 0-30 and 60-90 centimeter. The results showed that wastewater has increased the amount of N, P, and K to other treatments and control area. The concentration of potassium in surface layer of area treated by combination of salty water and wastewater with amount of 459.39 ppm has the most significant difference to control and other treatments. Also, the maximum amount of nitrogen was observed in sub layer of saline and brackish water treatment with amount of 0.08 percent.
Show more [+] Less [-]Evaluation of Faryab spring hydrochemistry in Hormozgan Province, Southern Iran
2017
Asadpour, Gholamabbas
With a mean precipitation rate, much lower than that of the world, Iran is among the countries that face severe water challenges. The present study has dealt with the evaluation of hydrochemistry of Faryab spring water in Hormozgan Province, Iran. Four different composite water samples have been analyzed to detect major anions, cations, total dissolved solids, electrical conductivity, pH, and sodium absorption ratio. The dominant water type was detected as sodium-chloride, with remarkable high concentration of sodium and chloride ions that makes it unfit for drinking purposes. Regarding irrigation use, high values of electrical conductivity (29989 to 31983 µS/cm) and sodium absorption ratio (SAR) (58.1 to 61) indicate a very high risk level for salinity and sodium alkali hazards, respectively. Abundance of secondary minerals such as halite and gypsum is considered to be the main reason for remarkably-high TDS values. Intensity of salt domes within the area would also facilitate solution/dissolution process of Na+ and Cl- into water column.
Show more [+] Less [-]“Smart” nanosensors for early detection of corrosion: Environmental behavior and effects on marine organisms
2022
Martins, Roberto Borges | Figueiredo, Joana | Sushkova, Alesia | Wilhelm, Manon | Tedim, João | Loureiro, Susana
Corrosion is an environmental and economic global problem. “Smart” or stimuli-responsive colorimetric nanosensors for maritime coatings have been proposed as an asset to overcome the limitations of the current monitoring techniques by changing color in the presence of triggers associated with the early stages of corrosion. Layered double hydroxides (Zn–Al LDH; Mg–Al LDH) and silica mesoporous nanocapsules (SiNC) were used as precursor nanocarriers of active compounds: hexacyanoferrate ions ([Fe(CN)₆]³⁻) and phenolphthalein (PhPh), respectively. Additionally, the safer-by-design principles were employed to optimize the nanosensors in an eco-friendly perspective (e.g., regular vs. warm-washed SiNC-PhPh; immobilization using different carriers: Zn–Al LDH-[Fe(CN)₆]³⁻ vs. Mg–Al LDH-[Fe(CN)₆]³⁻). Therefore, the present study aims to assess the environmental behavior in saltwater and the toxic effects of the nanosensors, their nanocarriers, and the active compounds on the marine microalgae Tetraselmis chuii and the crustacean Artemia salina. Briefly, tested compounds exhibited no acute toxic effects towards A. salina (NOEC = 100 mg/L), apart from SiNC-PhPh (LC₅₀ = 2.96 mg/L) while tested active compounds and nanosensors caused significant growth inhibition on T. chuii (lowest IC₅₀ = 0.40 mg/L for SiNC-PhPh). The effects of [Fe(CN)₆]³⁻ were similar regardless of the nanocarrier choice. Regarding SiNC-PhPh, its toxicity can be decreased at least twice by simply reinforcing the nanocapsules washing, which contributes to the removal (at least partially) of the surfactants residues. Thus, implementing safe-by-design strategies in the early stages of research proved to be critical, although further progress is still needed towards the development of truly eco-friendly nanosensors.
Show more [+] Less [-]Distinguishing multiple Zn sources in oysters in a complex estuarine system using Zn isotope ratio signatures
2021
Ma, Lan | Wang, Wen-Xiong | Evans, R Douglas
The Pearl River Estuary (PRE), the largest estuary in Southern China, historically has suffered from metal contamination as a result of inputs from different riverine discharges. Determining the sources of metals accumulation in local aquatic flora and fauna remains a great challenge for this estuarine system with complex water circulation. In this study, Zn isotope ratios were measured in local oysters (Crassostrea hongkongensis) collected at 8 locations in the estuary on four occasions from 2014 to 2018, to better understand and assess the contamination sources. The results showed no significant differences (p < 0.05) in δ⁶⁶Zn values in oysters among the four sampling dates within individual sites. However, approximately a 0.67‰ (range from -0.66‰ to 0.01‰) difference in average δ⁶⁶Zn values was consistently found in oysters collected from the east side of the estuary compared to the west side, despite their comparable Zn concentrations. A mixing model was subsequently used to estimate the relative contributions from various sources to the δ⁶⁶Zn values in these oysters. The mixing model predicts that zinc derived from the dissolved fraction (approximately 80 %) was the dominant uptake pathway for oysters collected at the east shore whereas approximately 50 % of the Zn in oysters collected at the west shore was derived from the particulate fraction. The mixing model also was used to estimate the relative impacts of fresh versus saline water on the measured δ⁶⁶Zn values. Contributions from these two sources also varied between the east and west shores. This study presents the first data for Zn isotope ratios in oysters from the PRE, providing new insight for using Zn isotope ratios in oysters as a powerful tracer of sources in a complex estuarine system.
Show more [+] Less [-]Influence of salinity and rare earth elements on simultaneous removal of Cd, Cr, Cu, Hg, Ni and Pb from contaminated waters by living macroalgae
2020
Costa, Marcelo | Henriques, Bruno | Pinto, João | Fabre, Elaine | Viana, Thainara | Ferreira, Nicole | Amaral, Joana | Vale, Carlos | Pinheiro-Torres, José | Pereira, Eduarda
Potentially toxic elements (PTEs) are of major concern due to their high persistence and toxicity. Recently, rare earth elements (REEs) concentration in aquatic ecosystems has been increasing due to their application in modern technologies. Thus, this work aimed to study, for the first time, the influence of REEs (lanthanum, cerium, praseodymium, neodymium, europium, gadolinium, terbium, dysprosium and yttrium) and of salinity (10 and 30) on the removal of PTEs (Cd, Cr, Cu, Hg, Ni and Pb) from contaminated waters by living macroalgae (Fucus spiralis, Fucus vesiculosus, Gracilaria sp., Osmundea pinnatifida, Ulva intestinalis and Ulva lactuca). Experiments ran for 168 h, with each macroalga exposed to saline water spiked with the six PTEs and with the six PTEs plus nine REEs (all at 1 μmol L⁻¹) at both salinities. Results showed that all species have high affinity with Hg (90–99% of removal), not being affected neither by salinity changes nor by the presence of other PTEs or REEs. Cd showed the lowest affinity to most macroalgae, with residual concentrations in water varying between 50 and 108 μg L⁻¹, while Pb removal always increased with salinity decline (up to 80% at salinity 10). REEs influence was clearer at salinity 30, and mainly for Pb. No substantial changes were observed in Ni and Hg sorption. For the remaining elements, the effect of REEs varied among algae species. Overall, the results highlight the role of marine macroalgae as living biofilters (particularly U. lactuca), capable of lowering the levels of top priority hazardous substances (particularly Hg) and other PTEs in water, even in the presence of the new emerging contaminants - REEs. Differences in removal efficiency between elements and macroalgae are explained by the contaminant chemistry in water and by macroalgae characteristics.
Show more [+] Less [-]Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers
2017
Rossi, Lorenzo | Zhang, Weilan | Ma, Xingmao
Rapidly growing global population adds significant strains on the fresh water resources. Consequently, saline water is increasingly tapped for crop irrigation. Meanwhile, rapid advancement of nanotechnology is introducing more and more engineered nanoparticles into the environment and in agricultural soils. While some negative effects of ENPs on plant health at very high concentrations have been reported, more beneficial effects of ENPs at relatively low concentrations are increasingly noticed, opening doors for potential applications of nanotechnology in agriculture. In particular, we found that cerium oxide nanoparticles (CeO2NPs) improved plant photosynthesis in salt stressed plants. Due to the close connections between salt stress tolerance and the root anatomical structures, we postulated that CeO2NPs could modify plant root anatomy and improve plant salt stress tolerance. This study aimed at testing the hypothesis with Brassica napus in the presence of CeO2NPs (0, 500 mg kg−1 dry sand) and/or NaCl (0, 50 mM) in a growth chamber. Free hand sections of fresh roots were taken every seven days for three weeks and the suberin lamellae development was examined under a fluorescence microscope. The results confirmed the hypothesis that CeO2NPs modified the formation of the apoplastic barriers in Brassica roots. In salt stressed plants, CeO2NPs shortened the root apoplastic barriers which allowed more Na+ transport to shoots and less accumulation of Na+ in plant roots. The altered Na+ fluxes and transport led to better physiological performance of Brassica and may lead to new applications of nanotechnology in agriculture.
Show more [+] Less [-]Acute water quality criteria for polycyclic aromatic hydrocarbons, pesticides, plastic additives, and 4-Nonylphenol in seawater
2017
Durán, I. | Beiras, R.
Probabilistic environmental quality criteria for Naphthalene (Nap), Phenanthrene (Phe), Fluoranthene (Flu), Pyrene (Pyr), Triclosan (TCS), Tributyltin (TBT), Chlorpyrifos (CPY), Diuron (DUR), γ-Hexaclorocyclohexane (γ-HCH), Bisphenol A (BPA) and 4-Nonylphenol (4-NP) were derived from acute toxicity data using saltwater species representative of marine ecosystems, including algae, mollusks, crustaceans, echinoderms and chordates. Preferably, data concerns sublethal endpoints and early life stages from bioassays conducted in our laboratory, but the data set was completed with a broad literature survey. The Water Quality Criteria (WQC) obtained for TBT (7.1·10⁻³ μg L⁻¹) and CPY (6.6· 10⁻³ μg L⁻¹) were orders of magnitude lower than those obtained for PAHs (ranging from 3.75 to 45.2 μg L⁻¹), BPA (27.7 μg L⁻¹), TCS (8.66 μg L⁻¹) and 4-NP (1.52 μg L⁻¹). Critical values for DUR and HCH were 0.1 and 0.057 μg L⁻¹ respectively. Within this context, non-selective toxicants could be quantitatively defined as those showing a maximum variability in toxicity thresholds (TT) of 3 orders of magnitude across the whole range of marine diversity, and a cumulative distribution of the TT fitting to a single log-logistic curve, while for selective toxicants variability was consistently found to span 5 orders of magnitude and the TT distribution showed a bimodal pattern. For the latter, protective WQC must be derived taking into account the SSD of the sensitive taxa only.
Show more [+] Less [-]Effects of a brine discharge over soft bottom Polychaeta assemblage
2008
Del-Pilar-Ruso, Yoana | De-la-Ossa-Carretero, Jose Antonio | Giménez-Casalduero, Francisca | Sánchez Lizaso, José Luis
Desalination is a growing activity that has introduced a new impact, brine discharge, which may affect benthic communities. Although the role of polychaetes as indicators to assess organic pollution is well known, their tolerance to salinity changes has not been examined to such a great extent. The aim of this study was to examine the effect of brine discharge over soft bottom polychaete assemblage along the Alicante coast (Southeast Spain) over a two year period. Changes in the polychaete assemblage was analysed using univariate and multivariate techniques. We compared a transect in front of the discharge with two controls. At each transect we sampled at three depths (4, 10 and 15 m) during winter and summer. We have observed different sensitivity of polychaete families to brine discharges, Ampharetidae being the most sensitive, followed by Nephtyidae and Spionidae. Syllidae and Capitellidae showed some resistance initially, while Paraonidae proved to be a tolerant family. The Polychaete assemblage is affected by the brine discharge of the Alicante desalination plant and we detect different sensitivity levels in polychaete families to brine impact.
Show more [+] Less [-]The adaptive mechanism of halophilic Brachybacterium muris in response to salt stress and its mitigation of copper toxicity in hydroponic plants
2022
Liu, Siyu | Liu, Xiayu | Shi, Ying | Zhuang, Shulin | Chen, Qihe
Serious environmental pollution of heavy metals has attracted people's attention in recent years and halophiles seem to be potential bioremediation in the controlling of heavy metals contamination. In this study, the adaptive mechanism of halophilic Brachybacterium muris (B. muris) in response to salt stress and its mitigation of copper (Cu) toxicity in hydroponic plants were investigated. The cell morphology was observed using transmission electron microscopy. The cell membrane composition and fluidity were examined by the combination of gas chromatography, gas chromatography-mass spectrometry, ultra-high performance liquid chromatography-mass spectrometry, and fluorescence spectrophotometry. Moreover, the metabolic pathways of B. muris in response to salt stress were analyzed using the prokaryotic transcriptomics approach. A hydroponic co-culture model was further conducted to explore the effects of B. muris on wheat seedlings subjected to Cu toxicity. It was found that B. muris can respond to high osmotic pressure by improving the cell membrane fluidity, altering the cell morphology and cell membrane compositions. The proportion of unsaturated fatty acids, phosphatidylethanolamine, and phosphatidylinositol in B. muris cell membranes increased significantly, while zymosterol, fecosterol, and ergosterol contents decreased under a high salinity situation. Further transcriptomic analysis showed that genes encoding L-glutamate synthase, glutamate ABC transporter ATP-binding protein, and sodium cotransporter were up-regulated, indicating that both the synthesis and transport of glutamate were significantly enhanced under high osmotic pressure. Additionally, B. muris alleviated the inhibitory effect of Cu²⁺ on wheat seedlings' growth, causing a 30.14% decrease in H₂O₂ content and a significant increase of 83.86% and 45.96% in POD activity and GSH content in wheat roots, respectively. The findings of this study suggested that the salt-tolerant B. muris may serve as a promising strategy for improving the bioremediation of metal-contaminated saline water and soils.
Show more [+] Less [-]Optimized parameters of the electrocoagulation process using a novel reactor with rotating anode for saline water treatment
2020
Al-Raad, Abbas A. | Hanafiah, Marlia M. | Naje, Ahmed Samir | Ajeel, Mohammed A.
In this study, a novel rotating anode-based reactor (RAR) was designed to investigate its effectiveness in removing dissolved salts (i.e., Br⁻, Cl⁻, TDS, and SO₄²⁻) from saline water samples. Two configurations of an impeller’s rotating anode with various operation factors, such as operating time (min), rotating speed (rpm), current density (mA/cm²), temperature (°C), pH, and inter-electrode space (cm), were used in the desalination process. The total cost consumed was calculated on the basis of the energy consumption and aluminum (Al) used in the desalination. In this respect, operating costs were calculated using optimal operating conditions. Salinity was removed electrochemically from saline water through electrocoagulation (EC). Results showed that the optimal adjustments for treating saline water were carried out at the following conditions: 150 and 75 rpm rotating speeds for the impeller’s rod anode and plate anode designs, respectively; 2 mA/cm² current density (I), 1 cm² inter-electrode space, 25 °C temperature, 10 min operation time, and pH 8. The results indicated that EC technology with impeller plates of rotating anode can be considered a very cost-effective technique for treating saline water.
Show more [+] Less [-]