Refine search
Results 1-10 of 50
Microplastics in juvenile Chinook salmon and their nearshore environments on the east coast of Vancouver Island Full text
2019
Collicutt, Brenna | Juanes, Francis | Dudas, Sarah E.
Microplastics are a significant issue in the world's oceans. These small plastic particles (<5 mm in size) are becoming globally ubiquitous in the marine environment and are ingested by various fish species. Here we investigate the incidence of microplastics in juvenile Chinook salmon and their nearshore marine environments on the east coast of Vancouver Island, British Columbia. We completed a series of beach seines, plankton tows and sediment cores in nearshore areas of importance to juvenile salmon. Microplastics were extracted from fish, water and sediment samples and concentrations were quantified. Microplastics analysis, consisting predominantly of fibrous plastics, showed juvenile Chinook salmon contained 1.2 ± 1.4 (SD) microplastics per individual while water and sediment samples had 659.9 ± 520.9 microplastics m⁻³ and 60.2 ± 63.4 microplastics kg⁻¹ dry weight, respectively. We found no differences in microplastic concentrations in juvenile Chinook and water samples among sites but observed significantly higher concentrations in sediment at the Deep Bay site compared to Nanaimo and Cowichan Bay sites. Chinook microplastic concentrations were relatively low compared to literature values and, given the size and type of microplastics we observed, are unlikely to represent an immediate threat to fish in this area. However, microplastics less than 100 μm in size were not included in the study and may represent a greater threat due to their ability to translocate through tissues.
Show more [+] Less [-]The Kuril Islands as a potential region for aquaculture: Trace elements in chum salmon Full text
2016
Khristoforova, Nadezhda K. | Tsygankov, Vasiliy Yu | Lukyanova, Olga N. | Boyarova, Margarita D.
The Kuril Islands region is considered promising for development of salmon aquaculture. There are 41 salmon fish hatcheries in the Sakhalin Island and the Kuril Islands, 34 of them are hatcheries of the chum. Therefore, concentrations of six elements (Zn, Cu, Cd, Pb, As, and Hg) were determined in chum salmon were caught in this region. The contents of toxic elements (Cd, Pb, As, and Hg) don't exceed their maximum permissible concentrations (MPC) according to the Russian sanitary standards, but concentration of Pb are closely to MPC. Increased concentrations of Pb in wild chum have the natural origin. The unusual conditions of the Western Pacific are formed under the influence such factors as volcanism and upwelling.
Show more [+] Less [-]Organic contaminants in imported salmon feed and their effects on reef ecosystems in New Zealand Full text
2022
McMullin, Rebecca M. | Chen, Ruiwen | Niu, Shan | Matthews, Will | Murschell, Trey | Wing, Stephen R. | Hageman, Kimberly J.
Organic matter from salmon farms has been shown to be assimilated by soft sediment and rocky reef communities within the ecological footprint of salmon farms. Given these findings, another question arises – What other chemicals in salmon feed may be assimilated into wild communities via organic waste from salmon farms? Here we measured a suite of organic contaminants in salmon feed, in organisms used in a controlled feeding experiment, and in reef species collected within the depositional footprint of salmon farms. Gas Chromatography-Tandem Mass Spectrometry was used to quantify trace concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and current-use (CPUs) and historic-use pesticides (HUPs) in salmon feed imported to New Zealand. The effect of assimilation of farm-derived organic matter on contaminant profiles differed among species during the controlled feeding experiment and demonstrated that migration of individuals to a farm-associated site has the potential to increase or decrease organic contaminant concentrations. Concentrations of PCBs in Parapercis colias (blue cod), a highly resident, long-lived fish, were significantly higher at farm sites than at reference sites. While these concentrations were relatively low in a global context, this result presents blue cod as an important candidate for future monitoring of organic contaminants around point sources. PCBs and PBDEs measured in wild marine species were all below limits set by the European Union, whereas concentrations of certain HUPs, specifically dichlorodiphenyltrichloroethane (DDT) and its degradation products and endosulfan, may be of concern as a consequence of alternative anthropogenic activities. Overall, feed imported to New Zealand had relatively low levels of most organic contaminants that, at current levels, are unlikely to result in significant ecological effects to wild communities in adjacent habitats.
Show more [+] Less [-]Evidence for rapid gut clearance of microplastic polyester fibers fed to Chinook salmon: A tank study Full text
2020
Spanjer, Andrew R. | Liedtke, Theresa L. | Conn, Kathleen E. | Weiland, Lisa K. | Black, Robert W. | Godfrey, Nathan
Marine and freshwater plastic pollution is a challenging issue receiving large amounts of research and media attention. Yet, few studies have documented the impact of microplastic ingestion to aquatic organisms. In the Pacific Northwest, Chinook salmon are a culturally and commercially significant fish species. The presence of marine and freshwater microplastic pollution is well documented in Chinook salmon habitat, yet no research has investigated the impacts to salmon from microplastic ingestion. The majority of the marine microplastics found in the Salish Sea are microfibers, synthetic extruded polymers that come from commonly worn clothing. To understand the potential impacts of microfiber ingestion to fish, we ran a feeding experiment with juvenile Chinook salmon to determine if ingested fibers are retained or digestion rates altered over a 10 day digestion period. The experiment was completed in two trials, each consisted of 20 control and 20 treatment fish. Treatment fish were each fed an amended ration of 12 food pellets spiked with 20 polyester microfibers and control fish were fed the same ration without added microfibers. Fish were sampled at day 0, 3, 5, 7, and 10 to assess if fibers were retained in their gastrointestinal tract and to determine the rate of digestion. Fibers for the experiment came from washing a red polyester fleece jacket in a microfiber retention bag. Fibers had a mean length of 4.98 mm. Results showed fish were able to clear up to 94% of fed fibers over 10 days. Differences in mean gastrointestinal mass were not statistically significant at any sampled time between treatment and controls, suggesting that the ingestion of microfibers did not alter digestion rates. Further work is needed to understand if repeated exposures, expected in the environment, alter digestion or food assimilation for growth.
Show more [+] Less [-]Spatial distribution of mercury in southeastern Alaskan streams influenced by glaciers, wetlands, and salmon Full text
2014
Nagorski, Sonia A. | Engstrom, Daniel R. | Hudson, John P. | Krabbenhoft, David P. | Hood, Eran | DeWild, John F. | Aiken, George R.
Southeastern Alaska is a remote coastal-maritime ecosystem that is experiencing increased deposition of mercury (Hg) as well as rapid glacier loss. Here we present the results of the first reported survey of total and methyl Hg (MeHg) concentrations in regional streams and biota. Overall, streams draining large wetland areas had higher Hg concentrations in water, mayflies, and juvenile salmon than those from glacially-influenced or recently deglaciated watersheds. Filtered MeHg was positively correlated with wetland abundance. Aqueous Hg occurred predominantly in the particulate fraction of glacier streams but in the filtered fraction of wetland-rich streams. Colonization by anadromous salmon in both glacier and wetland-rich streams may be contributing additional marine-derived Hg. The spatial distribution of Hg in the range of streams presented here shows that watersheds are variably, yet fairly predictably, sensitive to atmospheric and marine inputs of Hg.
Show more [+] Less [-]Pyrethroid insecticides in urban salmon streams of the Pacific Northwest Full text
2011
Weston, D.P. | Asbell, A.M. | Hecht, S.A. | Scholz, N.L. | Lydy, M.J.
Urban streams of the Pacific Northwest provide spawning and rearing habitat for a variety of salmon species, and food availability for developing salmon could be adversely affected by pesticide residues in these waterbodies. Sediments from Oregon and Washington streams were sampled to determine if current-use pyrethroid insecticides from residential neighborhoods were reaching aquatic habitats, and if they were at concentrations acutely toxic to sensitive invertebrates. Approximately one-third of the 35 sediment samples contained measurable pyrethroids. Bifenthrin was the pyrethroid of greatest concern with regards to aquatic life toxicity, consistent with prior studies elsewhere. Toxicity to Hyalella azteca and/or Chironomus dilutus was found in two sediment samples at standard testing temperature (23 °C), and in one additional sample at a more environmentally realistic temperature (13 °C). Given the temperature dependency of pyrethroid toxicity, low temperatures typical of northwest streams can increase the potential for toxicity above that indicated by standard testing protocols.
Show more [+] Less [-]Dietary exposure to environmentally relevant pesticide mixtures impairs swimming performance and lipid homeostatic gene expression in Juvenile Chinook salmon at elevated water temperatures Full text
2022
Fuller, Neil | Magnuson, Jason T. | Huff Hartz, Kara E. | Whitledge, Gregory W. | Acuña, Shawn | McGruer, Victoria | Schlenk, Daniel | Lydy, Michael J.
Aquatic organisms are exposed to complex mixtures of pesticides in the environment, but traditional risk assessment approaches typically only consider individual compounds. In conjunction with exposure to pesticide mixtures, global climate change is anticipated to alter thermal regimes of waterways, leading to potential co-exposure of biota to elevated temperatures and contaminants. Furthermore, most studies utilize aqueous exposures, whereas the dietary route of exposure may be more important for fish owing to the hydrophobicity of many pesticides. Consequently, the current study aimed to determine the effects of elevated temperatures and dietary pesticide mixtures on swimming performance and lipid metabolism of juvenile Chinook salmon, Oncorhynchus tshawytscha. Fish were fed pesticide-dosed pellets at three concentrations and three temperatures (11, 14 and 17 °C) for 14 days and swimming performance (Uₘₐₓ) and expression of genes involved in lipid metabolism and energetics were assessed (ATP citrate lyase, fatty acid synthase, farnesoid x receptor and liver x receptor). The low-pesticide pellet treatment contained five pesticides, p,p’-DDE, bifenthrin, esfenvalerate, chlorpyrifos and fipronil at concentrations based on prey items collected from the Sacramento River (CA, USA) watershed, with the high-pesticide pellet treatment containing a six times higher dose. Temperature exacerbated effects of pesticide exposure on swimming performance, with significant reductions in Uₘₐₓ of 31 and 23% in the low and high-pesticide pellet groups relative to controls at 17 °C, but no significant differences in Uₘₐₓ among pesticide concentrations at 11 or 14 °C. At 14 °C there was a significant positive relationship between juvenile Chinook salmon pesticide body residues and expression of ATP citrate lyase and fatty acid synthase, but an inverse relationship and significant downregulation at 17 °C. These findings suggest that temperature may modulate effects of environmentally relevant pesticide exposure on salmon, and that pesticide-induced impairment of swimming performance may be exacerbated under future climate scenarios.
Show more [+] Less [-]The impact of anti-sea lice pesticides, azamethiphos and deltamethrin, on European lobster (Homarus gammarus) larvae in the Norwegian marine environment Full text
2020
Parsons, Aoife E. | Escobar-Lux, Rosa H. | Sævik, Pål Næverlid | Samuelsen, Ole B. | Agnalt, Ann-Lisbeth
Anti-sea lice pesticides, used in the salmonid aquaculture industry, are a growing environmental concern due to their potential to adversely affect non-target crustaceans. Azamethiphos and deltamethrin are two bath treatment pesticides used on salmon farms in Norway, however, limited information is available on their impact on European lobster (Homarus gammarus) larvae in the Norwegian marine environment. Here, we firstly report the lethal (LC₅₀) and effective (EC₅₀) concentrations of azamethiphos and deltamethrin for stage I and stage II larvae, following 1-h exposures. Using a hydrodynamic model, we also modelled the dispersal of both compounds into the marine environment around selected Norwegian farms and mapped the potential impact zones (areas that experience LC₅₀ and EC₅₀ concentrations) around each farm. Our data shows that azamethiphos and deltamethrin are acutely toxic to both larval stages, with LC₅₀ and EC₅₀ values below the recommended treatment concentrations. We also show that the azamethiphos impact zones around farms were relatively small (mean area of 0.04–0.2 km²), however deltamethrin impact zones covered much larger areas (mean area of 21.1–39.0 km²). These findings suggest that deltamethrin poses a significant risk to European lobster in the Norwegian marine environment while the impact of azamethiphos may be less severe.
Show more [+] Less [-]Species-specific debromination of polybromodiphenyl ethers determined by deiodinase activity in fish Full text
2019
Luo, Yuan-Lai | Luo, Xiao-Jun | Ye, Mei-Xia | Lin, Lan | Zeng, Yan-Hong | Mai, Bi-Xian
A combination of previous studies and the present study indicated species-specific debromination of polybromodiphenyl ethers (PBDEs) in teleost fish. Three situations of debromination were found, namely rapid debromination represented by debromination of BDE 99 to BDE 47 observed in common carp, tilapia, crucian carp, and oscar fish; slow debromination represented by debromination of BDE 99 to BDE 49 observed in the abovementioned fish and rainbow trout, salmon, and snakehead; and no or minor debromination observed in catfish. The results of experiments on cofactors, inhibitors, and substrate competitors indicated that activities of outer ring deiodinase of 3, 3′, 5′-triiodothyronine (type I deiodinase), which cannot be inhibited by 6-propyl-2-thiouracil, were responsible for the rapid debromination, and the outer ring deiodinase of thyroxine (type II deiodinase) regulated the slow debromination. The debromination of BDE 99 to BDE 49 was more common, but occurred at a much lower rate (approximately 100 times lower) than the debromination of BDE 99 to BDE 47. This was because the activity of type II deiodinase was nearly two orders of magnitude lower than that of type I deiodinase in the fish species studied. Further studies on debromination of PBDEs and properties of deiodinase in more species are needed to confirm the hypothesis.
Show more [+] Less [-]Trends of polychlorinated dioxins, polychlorinated furans, and dioxin-like polychlorinated biphenyls in Chinook and Coho salmonid eggs from a Great Lakes tributary Full text
2019
Garner, Andrew J. | Pagano, James J.
Eggs from mature Chinook (Oncorhynchus tshawytscha) and Coho (Oncorhynchus kisutch) salmon were collected between 2004 and 2014 from the Salmon River fish hatchery in Altmar, New York. The egg samples were analyzed for seventeen polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), as well as four dioxin-like polychlorinated biphenyls (DL-PCBs) using USEPA methods 1613 and 1668. Salmonid eggs were chosen as a tissue of interest since salmon feed at all trophic levels of the food web as they grow, and spawn in a narrow range of ages providing consistent, representative, and temporal samples of contaminant exposure. First-order decay models indicate decreasing trends for all select contaminants in both species, expressed by a toxic equivalence (TEQ) half-life (t₁/₂) of 11 years in Chinook and Coho eggs. No significant statistical difference in contaminant elimination rates were noted between species. TEQ elimination rates for Coho and Chinook eggs were not significantly different (p > 0.05) when compared with published Lake Ontario whole-fish lake trout elimination rates. Our research demonstrates that salmonid eggs are an effective means to assess PCDD, PCDF, and DL-PCB exposures and long-term trends in the Great Lakes.
Show more [+] Less [-]